scholarly journals A Diamond Temperature Sensor Based on the Energy Level Shift of Nitrogen-Vacancy Color Centers

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1576 ◽  
Author(s):  
Mingyang Yang ◽  
Qilong Yuan ◽  
Jingyao Gao ◽  
Shengcheng Shu ◽  
Feiyue Chen ◽  
...  

The nitrogen-vacancy (NV) color center in chemical vapor deposition (CVD) diamond has been widely investigated in quantum information and quantum biosensors due to its excellent photon emission stability and long spin coherence time. However, the temperature dependence of the energy level of NV color centers in diamond is different from other semiconductors with the same diamond cubic structure for the high Debye temperature and very small thermal expansion coefficient of diamond. In this work, a diamond sensor for temperature measurement with high precision was fabricated based on the investigation of the energy level shifts of NV centers by Raman and photoluminescence (PL) spectra. The results show that the intensity and linewidth of the zero-phonon line of NV centers highly depend on the environmental temperature, and the energy level shifts of NV centers in diamond follow the modified Varshni model very well, a model which is better than the traditional version. Accordingly, the NV color center shows the ability in temperature measurement with a high accuracy of up to 98%. The high dependence of NV centers on environmental temperature shows the possibility of temperature monitoring of NV center-based quantum sensors in biosystems.

Author(s):  
Muhammad Hafiz bin Abu Bakar ◽  
Aboulaye Traore ◽  
Junjie Guo ◽  
Toshiharu MAKINO ◽  
Masahiko Ogura ◽  
...  

Abstract Diamond solid-state devices are very attractive to electrically control the charge state of Nitrogen-Vacancy (NV) centers. In this work, Vertical p-type Diamond Schottky Diode (VDSDs) is introduced as a platform to electrically control the interconversion between the neutral charge NV (NV0) and negatively charged NV (NV-) centers. The photoluminescence (PL) of NV centers generated by ion-implantation in VDSDs shows the increase of NV- Zero Phonon Line (ZPL) and phonon sideband (PBS) intensities with the reverse voltage, whereas the NV0 ZPL intensity decreases. Thus, NV centers embedded into VDSDs are converted into NV- under reverse bias voltage. Moreover, the optically detected magnetic resonance (ODMR) of NV- exhibits an increase in the ODMR contrast with the reverse bias voltage and splitting of the resonance dips. Since no magnetic is applied, such a dip splitting in ODMR spectrum is ascribed the Stark effect induced by the interaction of NV- with the electric field existing within the depletion region of VDSDs.


2019 ◽  
Vol 18 (03n04) ◽  
pp. 1940010 ◽  
Author(s):  
A. L. Pushkarchuk ◽  
S. A. Kuten ◽  
V. A. Pushkarchuk ◽  
A. P. Nizovtsev ◽  
S. Ya. Kilin

One of the most promising platforms to implement quantum technologies are coupled electron-nuclear spins in solids in which electrons can play a role of “fast” qubits, while nuclear spins can store quantum information for a very long time due to their exceptionally high isolation from the environment. The well-known representative of such systems is the “nitrogen-vacancy” (NV) center in diamond coupled by a hyperfine interaction to its intrinsic [Formula: see text]N/[Formula: see text]N nuclear spin or to [Formula: see text]C nuclear spins presenting in the diamond lattice. More recently, other paramagnetic color centers in diamond have been identified exhibiting even better characteristics in comparison to the NV center. Essential prerequisite for a high-fidelity spin manipulation in these systems with tailored control pulse sequences is a complete knowledge of hyperfine interactions. Development of this understanding for one of the new color centers in diamond, viz., neutral “silicon-vacancy” (SiV0) color center, is a primary goal of this paper, in which we are presenting preliminary results of computer simulation of spatial and hyperfine characteristics of SiV0 center in H-terminated clusters C[Formula: see text][SiV0]H[Formula: see text] and C[Formula: see text][SiV0]H[Formula: see text].


2011 ◽  
Vol 99 (16) ◽  
pp. 161903 ◽  
Author(s):  
X.-D. Chen ◽  
C.-H. Dong ◽  
F.-W. Sun ◽  
C.-L. Zou ◽  
J.-M. Cui ◽  
...  

2021 ◽  
Author(s):  
Yong Li ◽  
Xiaozhou Chen ◽  
Maowu Ran ◽  
Yanchao She ◽  
Zhengguo Xiao ◽  
...  

2018 ◽  
Vol 190 ◽  
pp. 02008
Author(s):  
Taras Plakhotnik ◽  
Haroon Aman

The paper describes application of diamond nano crystals to research on dynamic processes in small (less than 1 mm across) evaporating droplets deposited on a solid substrate. Such droplets are used as a model system for testing proposed bio applications of nitrogen-vacancy centers in diamond. We demonstrate that a high spatial resolution of our methods reveals unexpected features of the evaporation and fluid mechanics in such droplets.


2011 ◽  
Vol 109 (8) ◽  
pp. 083530 ◽  
Author(s):  
J. O. Orwa ◽  
C. Santori ◽  
K. M. C. Fu ◽  
B. Gibson ◽  
D. Simpson ◽  
...  

2015 ◽  
Vol 27 (2) ◽  
pp. 562-569 ◽  
Author(s):  
Zafer Hawash ◽  
Luis K. Ono ◽  
Sonia R. Raga ◽  
Michael V. Lee ◽  
Yabing Qi

2000 ◽  
Vol 660 ◽  
Author(s):  
Li Yan ◽  
C.W. Tang ◽  
M. G. Mason ◽  
Yongli Gao

ABSTRACTTris(8-hydroxyquinoline) aluminum (Alq3) based organic light emission diodes (OLED) have been a focus of material research in recent years. One of the key issues in searching for a better device performance and fabricating conditions is suitable electron-injection materials. We have investigated the energy alignment and the interface formation between different metals and Alq3 using X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS). The interface is formed by depositing the target cathode material, such as Ca, Al or Al/LiF, onto an Alq3 film in a stepwise fashion in an ultrahigh vacuum environment. While the UPS results show the work function and vacuum level changes during interfaces formation, implying a possible surface dipole layer, XPS results show a more detailed and complex behavior. When a low work function metal such as Ca is deposited onto an Alq3 surface, a gap state is observed in UPS. At the same time, a new peak can be observed in the N 1s core level at a lower binding energy. These results can be characterized as charge transfer from the low work function metal to Alq3. The shifting of core levels are also observed, which may be explained by doping from metal atoms or charge diffusion. These interfaces are drastically different than the Al/Alq3 interface, which has very poor electron injection. At the Al/Alq3 interface there is a destructive chemical reaction and much smaller core level shifts are observed. Based on detailed analysis, energy level diagrams at the interface are proposed.


Sign in / Sign up

Export Citation Format

Share Document