zero phonon line
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 37)

H-INDEX

23
(FIVE YEARS 3)

Author(s):  
Muhammad Hafiz bin Abu Bakar ◽  
Aboulaye Traore ◽  
Junjie Guo ◽  
Toshiharu MAKINO ◽  
Masahiko Ogura ◽  
...  

Abstract Diamond solid-state devices are very attractive to electrically control the charge state of Nitrogen-Vacancy (NV) centers. In this work, Vertical p-type Diamond Schottky Diode (VDSDs) is introduced as a platform to electrically control the interconversion between the neutral charge NV (NV0) and negatively charged NV (NV-) centers. The photoluminescence (PL) of NV centers generated by ion-implantation in VDSDs shows the increase of NV- Zero Phonon Line (ZPL) and phonon sideband (PBS) intensities with the reverse voltage, whereas the NV0 ZPL intensity decreases. Thus, NV centers embedded into VDSDs are converted into NV- under reverse bias voltage. Moreover, the optically detected magnetic resonance (ODMR) of NV- exhibits an increase in the ODMR contrast with the reverse bias voltage and splitting of the resonance dips. Since no magnetic is applied, such a dip splitting in ODMR spectrum is ascribed the Stark effect induced by the interaction of NV- with the electric field existing within the depletion region of VDSDs.


Author(s):  
Qiang Zhou ◽  
Jing Wan ◽  
Yayun Zhou ◽  
Shuai Zhang ◽  
Dongxin Shi ◽  
...  

2021 ◽  
Author(s):  
Megha Khokhar ◽  
Nitesh Singh ◽  
Rajesh V Nair

Abstract Dielectric metasurfaces with unique possibilities of manipulating light-matter interaction lead to new insights in exploring spontaneous emission control using single quantum emitters. Here, we study the stacked metasurfaces in one- (1D) and two-dimensions (2D) to enhance the emission rate of a single quantum emitter using the associated optical resonances. The 1D structures with stacked bilayers are investigated to exhibit Tamm plasmon resonance optimized at the zero phonon line (ZPL) of the negative nitrogen-vacancy (NV-) center. The 2D stacked metasurface comprising of two-slots silicon nano-disks is studied for the Kerker condition at ZPL wavelength. The far-field radiation plots for the 1D and 2D stacked metasurfaces show an increased extraction efficiency rate for the NV- center at ZPL wavelength that reciprocates the localized electric field intensity. The modified local density of optical states results in large Purcell enhancement of 3.8 times and 25 times for the single NV- center integrated with 1D and 2D stacked metasurface, respectively. These results have implications in exploring stacked metasurfaces for applications such as single photon generation and CMOS compatible light sources for on-demand chip integration.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012065
Author(s):  
Yu V Petrov ◽  
O F Vyvenko ◽  
O A Gogina ◽  
K Bolotin ◽  
S Kovalchuk ◽  
...  

Abstract Hexagonal boron nitride is a wide band gap semiconductor exhibiting various luminescence bands in visible and near ultraviolet range, which can be used as single photon source. The luminescence band with zero phonon line at 4.1 eV is commonly ascribed to the carbon impurity introduced during crystal growth. In this paper we provide experimental evidence that carbon-related luminescent centers can be introduced in hBN by local electron irradiation in the chamber of scanning electron microscope at room temperature that can be used as a technique for the nanofabrication of single photon source devices with desired pattern.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2814
Author(s):  
Sergey A. Grudinkin ◽  
Nikolay A. Feoktistov ◽  
Kirill V. Bogdanov ◽  
Mikhail A. Baranov ◽  
Valery G. Golubev ◽  
...  

The negatively charged germanium-vacancy GeV− color centers in diamond nanocrystals are solid-state photon emitters suited for quantum information technologies, bio-sensing, and labeling applications. Due to the small Huang–Rhys factor, the GeV−-center zero-phonon line emission is expected to be very intensive and spectrally narrow. However, structural defects and the inhomogeneous distribution of local strains in the nanodiamonds result in the essential broadening of the ZPL. Therefore, clarification and elimination of the reasons for the broadening of the GeV− center ZPL is an important problem. We report on the effect of reactive ion etching in oxygen plasma on the structure and luminescence properties of nanodiamonds grown by hot filament chemical vapor deposition. Emission of GeV− color centers ensembles at about 602 nm in as-grown and etched nanodiamonds is probed using micro-photoluminescence and micro-Raman spectroscopy at room and liquid nitrogen temperature. We show that the etching removes the nanodiamond surface sp2-induced defects resulting in a reduction in the broad luminescence background and a narrowing of the diamond Raman band. The zero-phonon luminescence band of the ensemble of the GeV− centers is a superposition of narrow lines originated most likely from the GeV− center sub-ensembles under different uniaxial local strain conditions.


Nano Letters ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 8119-8125
Author(s):  
Hans Jurgen von Bardeleben ◽  
Jean-Louis Cantin ◽  
Uwe Gerstmann ◽  
Wolf Gero Schmidt ◽  
Timur Biktagirov

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan Fait ◽  
Marián Varga ◽  
Karel Hruška ◽  
Alexander Kromka ◽  
Bohuslav Rezek ◽  
...  

Abstract The controlled extraction of light from diamond optical color centers is essential for their practical prospective applications as single photon sources in quantum communications and as biomedical sensors in biosensing. Photonic crystal (PhC) structures can be employed to enhance the collection efficiency from these centers by directing the extracted light towards the detector. However, PhCs must be fabricated with nanoscale precision, which is extremely challenging to achieve for current materials and nanostructuring technologies. Imperfections inherently lead to spectral mismatch of the extraction (leaky) modes with color center emission lines. Here, we demonstrate a new and simple two-step method for fabricating diamond PhC slabs with leaky modes overlapping the emission line of the silicon vacancy (SiV) centers. In the first step, the PhC structure with leaky modes blue shifted from the SiV emission line is fabricated in a nanocrystalline diamond without SiV centers. A thin layer of SiV-rich diamond is then deposited over the PhC slab so that the spectral position of the PhC leaky modes is adjusted to the emission line of the SiV centers, thereby avoiding the need for nanoscale precision of the structuring method. An intensity enhancement of the zero-phonon line of the SiV centers by a factor of nine is achieved. The color centers in the thin surface layer are beneficial for sensing applications and their properties can also be further controlled by the diamond surface chemistry. The demonstrated PhC tuning method can also be easily adapted to other optical centers and photonic structures of different types in diamond and other materials.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5317
Author(s):  
Jingshan Hou ◽  
Wenxiang Yin ◽  
Langping Dong ◽  
Yang Li ◽  
Yufeng Liu ◽  
...  

In this work, a novel red-emitting oxyfluoride phosphor Na2NbOF5:Mn4+ with an ultra-intense zero-phonon line (ZPL) was successfully synthesized by hydrothermal method. The phase composition and luminescent properties of Na2NbOF5:Mn4+ were studied in detail. The photoluminescence excitation spectrum contains two intense excitation bands centered at 369 and 470 nm, which match well with commercial UV and blue light-emitting diode (LED) chips. When excited by 470 nm blue light, Na2NbOF5:Mn4+ exhibits red light emission dominated by ZPL. Notably, the color purity of the Na2NbOF5:Mn4+ red phosphor can reach 99.9%. Meanwhile, the Na2NbOF5:Mn4+ phosphor has a shorter fluorescence decay time than commercial K2SiF6:Mn4+, which is conducive to fast switching of images in display applications. Profiting from the intense ZPL, white light-emitting diode (WLED) with high color rendering index of Ra = 86.2 and low correlated color temperature of Tc = 3133 K is realized using yellow YAG:Ce3+ and red Na2NbOF5:Mn4+ phosphor. The WLED fabricated using CsPbBr3 quantum dots (QDs) and red Na2NbOF5:Mn4+ phosphor shows a wide color gamut of 127.56% NTSC (National Television Standard Committee). The results show that red-emitting Na2NbOF5:Mn4+ phosphor has potential application prospects in WLED lighting and display backlight.


2021 ◽  
Vol 103 (21) ◽  
Author(s):  
V. Hizhnyakov ◽  
V. Boltrushko ◽  
G. Benedek

Sign in / Sign up

Export Citation Format

Share Document