Scalable Network Traffic Classification Using Distributed Support Vector Machines

Author(s):  
Do Le Quoc ◽  
Valerio D'Alessandro ◽  
Byungchul Park ◽  
Luigi Romano ◽  
Christof Fetzer
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bo Liu ◽  
Jinfu Chen ◽  
Songling Qin ◽  
Zufa Zhang ◽  
Yisong Liu ◽  
...  

Due to the growth and popularity of the internet, cyber security remains, and will continue, to be an important issue. There are many network traffic classification methods or malware identification approaches that have been proposed to solve this problem. However, the existing methods are not well suited to help security experts effectively solve this challenge due to their low accuracy and high false positive rate. To this end, we employ a machine learning-based classification approach to identify malware. The approach extracts features from network traffic and reduces the dimensionality of the features, which can effectively improve the accuracy of identification. Furthermore, we propose an improved SVM algorithm for classifying the network traffic dubbed Optimized Facile Support Vector Machine (OFSVM). The OFSVM algorithm solves the problem that the original SVM algorithm is not satisfactory for classification from two aspects, i.e., parameter optimization and kernel function selection. Therefore, in this paper, we present an approach for identifying malware in network traffic, called Network Traffic Malware Identification (NTMI). To evaluate the effectiveness of the NTMI approach proposed in this paper, we collect four real network traffic datasets and use a publicly available dataset CAIDA for our experiments. Evaluation results suggest that the NTMI approach can lead to higher accuracy while achieving a lower false positive rate compared with other identification methods. On average, the NTMI approach achieves an accuracy of 92.5% and a false positive rate of 5.527%.


Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 301 ◽  
Author(s):  
Jie Cao ◽  
Da Wang ◽  
Zhaoyang Qu ◽  
Hongyu Sun ◽  
Bin Li ◽  
...  

Network traffic classification based on machine learning is an important branch of pattern recognition in computer science. It is a key technology for dynamic intelligent network management and enhanced network controllability. However, the traffic classification methods still facing severe challenges: The optimal set of features is difficult to determine. The classification method is highly dependent on the effective characteristic combination. Meanwhile, it is also important to balance the experience risk and generalization ability of the classifier. In this paper, an improved network traffic classification model based on a support vector machine is proposed. First, a filter-wrapper hybrid feature selection method is proposed to solve the false deletion of combined features caused by a traditional feature selection method. Second, to balance the empirical risk and generalization ability of support vector machine (SVM) traffic classification model, an improved parameter optimization algorithm is proposed. The algorithm can dynamically adjust the quadratic search area, reduce the density of quadratic mesh generation, improve the search efficiency of the algorithm, and prevent the over-fitting while optimizing the parameters. The experiments show that the improved traffic classification model achieves higher classification accuracy, lower dimension and shorter elapsed time and performs significantly better than traditional SVM and the other three typical supervised ML algorithms.


2017 ◽  
Vol 27 (1) ◽  
pp. e1962 ◽  
Author(s):  
Jie Cao ◽  
Zhiyi Fang ◽  
Guannan Qu ◽  
Hongyu Sun ◽  
Dan Zhang

Sign in / Sign up

Export Citation Format

Share Document