scholarly journals Network Traffic Classification using Genetic Algorithms based on Support Vector Machine

2016 ◽  
Vol 10 (2) ◽  
pp. 237-246
Author(s):  
Jie Cao ◽  
Zhiyi Fang
Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 301 ◽  
Author(s):  
Jie Cao ◽  
Da Wang ◽  
Zhaoyang Qu ◽  
Hongyu Sun ◽  
Bin Li ◽  
...  

Network traffic classification based on machine learning is an important branch of pattern recognition in computer science. It is a key technology for dynamic intelligent network management and enhanced network controllability. However, the traffic classification methods still facing severe challenges: The optimal set of features is difficult to determine. The classification method is highly dependent on the effective characteristic combination. Meanwhile, it is also important to balance the experience risk and generalization ability of the classifier. In this paper, an improved network traffic classification model based on a support vector machine is proposed. First, a filter-wrapper hybrid feature selection method is proposed to solve the false deletion of combined features caused by a traditional feature selection method. Second, to balance the empirical risk and generalization ability of support vector machine (SVM) traffic classification model, an improved parameter optimization algorithm is proposed. The algorithm can dynamically adjust the quadratic search area, reduce the density of quadratic mesh generation, improve the search efficiency of the algorithm, and prevent the over-fitting while optimizing the parameters. The experiments show that the improved traffic classification model achieves higher classification accuracy, lower dimension and shorter elapsed time and performs significantly better than traditional SVM and the other three typical supervised ML algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bo Liu ◽  
Jinfu Chen ◽  
Songling Qin ◽  
Zufa Zhang ◽  
Yisong Liu ◽  
...  

Due to the growth and popularity of the internet, cyber security remains, and will continue, to be an important issue. There are many network traffic classification methods or malware identification approaches that have been proposed to solve this problem. However, the existing methods are not well suited to help security experts effectively solve this challenge due to their low accuracy and high false positive rate. To this end, we employ a machine learning-based classification approach to identify malware. The approach extracts features from network traffic and reduces the dimensionality of the features, which can effectively improve the accuracy of identification. Furthermore, we propose an improved SVM algorithm for classifying the network traffic dubbed Optimized Facile Support Vector Machine (OFSVM). The OFSVM algorithm solves the problem that the original SVM algorithm is not satisfactory for classification from two aspects, i.e., parameter optimization and kernel function selection. Therefore, in this paper, we present an approach for identifying malware in network traffic, called Network Traffic Malware Identification (NTMI). To evaluate the effectiveness of the NTMI approach proposed in this paper, we collect four real network traffic datasets and use a publicly available dataset CAIDA for our experiments. Evaluation results suggest that the NTMI approach can lead to higher accuracy while achieving a lower false positive rate compared with other identification methods. On average, the NTMI approach achieves an accuracy of 92.5% and a false positive rate of 5.527%.


2018 ◽  
Vol 21 ◽  
pp. 00027
Author(s):  
Alicja Gerka

The main problem associated with the development of an effective network behaviour anomaly detection-based IDS model is the selection of the optimal network traffic classification method. This article presents the results of simulation research on the effectiveness of the use of machine learning algorithms in the network attacks detection. The research part of the work concerned finding the optimal method of network packets classification possible to implement in the intrusion detection system’s attack detection module. During the research, the performance of three machine learning algorithms (Artificial Neural Network, Support Vector Machine and Naïve Bayes Classifier) has been compared using a dataset from the KDD Cup competition. Attention was also paid to the relationship between the values of algorithm parameters and their effectiveness. The work also contains an short analysis of the state of cybersecurity in Poland.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4677
Author(s):  
Razan M. AlZoman ◽  
Mohammed J. F. Alenazi

Smart city networks involve many applications that impose specific Quality of Service (QoS) requirements, thus representing a challenging scenario for network management. Solutions aiming to guarantee QoS support have not been deployed in large-scale networks. Traffic classification is a mechanism used to manage different aspects, including QoS requirements. However, conventional traffic classification methods, such as the port-based method, are inefficient because of their inability to handle dynamic port allocation and encryption. Traffic classification using machine learning has gained research interest as an alternative method to achieve high performance. In fact, machine learning embeds intelligence into network functions, thus improving network management. In this study, we apply machine learning algorithms to predict network traffic classification. We apply four supervised learning algorithms: support vector machine, random forest, k-nearest neighbors, and decision tree. We also apply a port-based method of traffic classification based on applications’ popular assigned port numbers. Then, we compare the results of this method to those obtained from the machine learning algorithms. The evaluation results indicate that the decision tree algorithm provides the highest average accuracy among the evaluated algorithms, at 99.18%. Moreover, network traffic classification using machine learning provides more accurate results and higher performance than the port-based method.


Sign in / Sign up

Export Citation Format

Share Document