On-line calculation model of thermal stress of steam turbine rotor based on integrated modular modeling software

Author(s):  
Yanfeng Liu ◽  
Runtian Hao ◽  
Jianqiang Gao ◽  
Rutao Zhai ◽  
Xiaoying Fan
Author(s):  
Krzysztof Dominiczak ◽  
Romuald Rządkowski ◽  
Wojciech Radulski ◽  
Ryszard Szczepanik

Considered here are Nonlinear Auto-Regressive neural networks with exogenous inputs (NARX) as a mathematical model of a steam turbine rotor used for the on-line prediction of turbine temperature and stress. In this paper on-line prediction is presented on the basis of one critical location in a high pressure steam turbine rotor, according to power plant common measurements, i.e., turbine speed, turbine load as well as steam temperature and pressure before turbine control valve. In order to obtain neural networks that will correspond to the temperature and stress the critical rotor location, an FE rotor model was built. Neural networks trained using the FE rotor model not only have FEM accuracy, but also include nonlinearity related to nonlinear steam turbine expansion, nonlinear heat exchange inside the turbine and nonlinear rotor material properties during transient conditions. Simultaneous neural networks are algorithms which can be implemented in turbine controllers. This allows for the application of neural networks to control steam turbine stress in industrial power plants.


2013 ◽  
Vol 860-863 ◽  
pp. 1770-1781
Author(s):  
Dong Mei Ji ◽  
M. H. Herman Shen ◽  
Shi Hua Yang ◽  
Gang Xia

A thorough investigation on the effect of a 320MW steam turbine rotor notch fillet radius on thermal and mechanical stresses during start up is presented. The approach consists of a shape design and analysis procedure which incorporates a finite element model. The finite element model is used to characterize the radius of the rotor notch fillet for ensuring the designed thermal and mechanical stress state/pattern and associated deflection during start-up. The results indicate that the notch fillet radius r has significant impact on the total stress of the rotor, in particular on thermal stress. It is determined that the thermal stress is decreased as the notch fillet radius r increases to a critical value. However, the thermal stress becomes saturated as the radius is increased to values larger than the critical value. The results also indicate that the rotor notch fillet radius has little effect on the deflection of the rotor during start-up. This investigation could be very useful to designers for construction of the design guidelines for steam turbine rotors.


2012 ◽  
Vol 229-231 ◽  
pp. 1162-1165
Author(s):  
Shi Liu ◽  
Bin Li ◽  
Heng Liang Zhang ◽  
Cong Wang ◽  
Yang Shi ◽  
...  

This paper presents a system developed for online fatigue monitoring for steam turbine rotor in power plants. The system converts the plant transients to temperature and thermal stress responses using the analytical models modified by FEM. The torsional vibration caused by the possible sub-synchronous oscillation (SSO) phenomenon in power networks has been analyzed. The fatigue damage caused by thermal stress and SSO is studied based on the stress analysis and fatigue cumulation. The fatigue usage factor is computed using the rainflow cycle counting algorithm. The method can provide useful information in support of the unit’s life cycle management and efficient.


Author(s):  
Jingming Chen ◽  
Dongxiang Jiang ◽  
Chao Liu

Fault identification and diagnosis of steam turbine generator unit is very important for safely and economically operation of a power plant. Currently, on-line monitoring is already widely utilized for alarming and recording in steam turbine. However, large amount of on-line monitoring data is not fully utilized to realize on-line fault diagnosis and identification, especially multi-concurrent fault. In the present study, model-based method was used for on-line vibrational fault identification and diagnosis based on rotordynamics. A 660MW supercritical steam turbine rotor system was modeled using FEM. Single faults, such as mass unbalance, local shaft bow and transverse crack, and multi-concurrent faults were simulated. Fault-induced changes of equivalent loads were analyzed to figure out fault type, location and severity. For model-based method, fault diagnosis accuracy is influenced by the model accuracy and signal noise. Model sensitivity was studied in this research by comparing the influence of different model error and SNR (Signal to Noise Ratio). It was used to evaluate the degree of confidence of the diagnosis result. The smaller was the model sensitivity, the higher was the degree of confidence. Based on this research, model-based method was utilized to analyze real vibration signals extracted from the historical data of this unit. Fault identification result was an effective basis for conditioned based maintenance.


Sign in / Sign up

Export Citation Format

Share Document