Multiphysics modeling and analysis of integrated optical E-field sensor for sub-nanosecond intense electromagnetic pulse measurement

Author(s):  
Lu Wan ◽  
Yu Chen ◽  
Yonghong Yin ◽  
Wei Jia ◽  
Yiying Liu ◽  
...  
2018 ◽  
Vol 36 (6) ◽  
pp. 614-622
Author(s):  
Dinesh Kumar ◽  
Neelam Rup Prakash ◽  
Sukhwinder Singh

2006 ◽  
Vol 86 (1) ◽  
pp. 91-95 ◽  
Author(s):  
D. Runde ◽  
S. Brunken ◽  
C.E. Rüter ◽  
D. Kip

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8137
Author(s):  
Min Zhao ◽  
Xing Zhou ◽  
Yazhou Chen

The detection of an electromagnetic pulse (EMP) field is of great significance in determining the field environment of tested equipment in small spaces. Finger-shaped miniature optical fiber sensors for electromagnetic pulse field measurement were designed. The antenna of a weak field sensor was integrated with a shielding shell, and the wire welded at the direct electro-optic converting circuit connected to an optical fiber through special structure and circuit design was taken as the antenna of a strong field sensor. Measurements in the time domain and frequency domain had been carried out for the two sensors. Experiment results demonstrate that the weak field sensor and the strong field sensor have flat responses from 100 kHz to 1 GHz with a variation of 2.3 dB and 2.9 dB, respectively, and the EMP waveform detected by the sensors agrees well with the applied standard square wave. Moreover, the strong field sensor exhibits linear responses from 645 V/m to 83 kV/m. The resolution of the weak field sensor is as low as 13 V/m. The result indicated that the designed sensors had good performance.


Author(s):  
Venkatesha M. ◽  
Chaya B. M. ◽  
Pattnaik P. K. ◽  
Narayan K.

In this work modeling and analysis of an integrated opto-fluidic sensor, with a focus on achievement of single mode optical confinement and continuous flow of micro particles in the microfluidic channel for Lab-on-a Chip (LOC) sensing application is presented. This sensor consists of integrated optical waveguides, microfluidic channel among other integrated optical components. A continuous flow of micro particles in a narrow fluidic channel is achieved by maintaining the two sealed chambers at different temperatures and by maintaining a constant pressure of 1Pa at the centroid of narrow fluidic channel geometry. The analysis of silicon on insulator (SOI) integrated optical waveguide at an infrared wavelength of 1550nm for single mode sensing operation is presented. The optical loss is found to be 0.0005719dB/cm with an effective index of 2.2963. The model presented in this work can be effectively used to detect the nature of micro particles and continuous monitoring of pathological parameters for sensing applications.


Sign in / Sign up

Export Citation Format

Share Document