Cellular Neural Networks simulation on a parallel graphics processing unit

Author(s):  
Andres Fernandez ◽  
Ruben San Martin ◽  
Enric Farguell ◽  
Giovanni Egidio Pazienza
2011 ◽  
Vol 23 (1) ◽  
pp. 183-214 ◽  
Author(s):  
Marius Buibas ◽  
Gabriel A. Silva

We introduce a framework for simulating signal propagation in geometric networks (networks that can be mapped to geometric graphs in some space) and developing algorithms that estimate (i.e., map) the state and functional topology of complex dynamic geometric networks. Within the framework, we define the key features typically present in such networks and of particular relevance to biological cellular neural networks: dynamics, signaling, observation, and control. The framework is particularly well suited for estimating functional connectivity in cellular neural networks from experimentally observable data and has been implemented using graphics processing unit high-performance computing. Computationally, the framework can simulate cellular network signaling close to or faster than real time. We further propose a standard test set of networks to measure performance and compare different mapping algorithms.


2020 ◽  
Vol 20 (1) ◽  
pp. 67-76
Author(s):  
Rahmadya Trias Handayanto ◽  
Herlawati Herlawati

For the first time, machine learning did the classical classification process using two classes (bi-class) such as class -1 and class +1, 0 and 1, or the form of categories such as true and false. Famous methods used are Artificial Neural Networks (ANN) and Support Vector Machine (SVM). The current development was a problem with more than two classes, known as multi-class classes. For SVM sometimes the plural classes are overcome by doing a gradual process like a decision tree (DT) method. Meanwhile, ANN has experienced rapid development and is currently being developed with a large number of layers with the new activation functions, i.e. the rectified linear units (ReLu), and the probabilistic-based activation, i.e. softmax, including its optimizer methods (adam, sgd, and others). Then the term changed to Deep Learning (DL). This study aimed to compare two well-known methods (DL and SVM) in classifying multiple classes. The number of DL layers was six with the neuron composition are 128, 64, 32, 8, 4, and 3, while SVM uses a radial kernel base function with gamma and c respectively 0.7 and 5. Besides, this study intends to compare the use of the Graphics Processing Unit (GPU) available on Google Interactive Notebook (Google Colab), an online Python language programming application. The results showed that DL accuracy outperformed SVM but required large computational resources, with the accuracy for DL and SVM are 99% and 98%, respectively. However, the use of the GPU can overcome these problems and is proven to increase the speed of the process as much as 47 times. Keywords: Artificial Neural Networks, Graphics Processing Unit, Google Interactive Notebook, Rectified Linear units, Support Vector Machine. Abstrak Di awal perkembangannya mesin pembelajaran melakukan proses klasikfikasi menggunakan dua kelas (bi-class) misalnya kelas -1 dan kelas +1, 0 dan 1, atau bentuk kategori seperti benar dan salah. Metode terkenal yang digunakan adalah Jaringan Syaraf Tiruan (JST) dan Support Vector Machine (SVM). Perkembangan selanjutnya adalah problem dengan kelas yang lebih dari dua kelas, dikenal dengan istilah kelas jamak (multi-class). Untuk SVM terkadang kelas jamak diatasi dengan melakukan proses berjenjang mirip pohon keputusan (decision tree). Sementara itu JST telah mengalami perkembangan yang pesat dan saat ini sudah dikembangkan dengan jumlah layer yang banyak disertai dengan fungsi-fungsi aktivasi terkini seperti rectified linear unit (ReLu), dan softmax yang berbasis probabilistik, termasuk juga metode-metode optimizernya (adam, sgd, dan lain-lain). Kemudian istilahnya berubah menjadi Deep Learning (DL). Penelitian ini mencoba membandingkan dua metode terkenal (DL dan SVM) dalam melakukan klasifikasi kelas jamak. Jumlah layer DL sebanyak enam dengan masing-masing neuron sebesar 128, 64, 32, 8, 4, dan 3, sementara SVM menggunakan kernel radial basis function dengan gamma dan c berturut-turut 0.7 dan 5. Selain itu penelitian ini bermaksud membandingkan penggunaan Graphics Processing Unit (GPU) yang tersedia di Google Interactive Notebook (Google Colab), sebuah aplikasi online pemrograman bahasa Python. Hasil penelitian menunjukan akurasi DL unggul tipis dibanding SVM namun memerlukan sumber daya komputasi yang besar masing-masing dengan akurasi 99% dan 98%. Namun penggunaan GPU mampu mengatasi permasalahan tersebut dan terbukti meningkatkan kecepatan proses sebanyak 47 kali. Kata kunci: Jaringan Syaraf Tiruan, Graphics Processing Unit, Google Interactive Notebook, Rectified Linear units, Support Vector Machine.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5330
Author(s):  
Marcin Łukasz Kowalski ◽  
Norbert Pałka ◽  
Jarosław Młyńczak ◽  
Mateusz Karol ◽  
Elżbieta Czerwińska ◽  
...  

Smuggling of drugs and cigarettes in small inflatable boats across border rivers is a serious threat to the EU’s financial interests. Early detection of such threats is challenging due to difficult and changing environmental conditions. This study reports on the automatic detection of small inflatable boats and people in a rough wild terrain in the infrared thermal domain. Three acquisition campaigns were carried out during spring, summer, and fall under various weather conditions. Three deep learning algorithms, namely, YOLOv2, YOLOv3, and Faster R-CNN working with six different feature extraction neural networks were trained and evaluated in terms of performance and processing time. The best performance was achieved with Faster R-CNN with ResNet101, however, processing requires a long time and a powerful graphics processing unit.


2013 ◽  
Vol 42 ◽  
pp. 1-11 ◽  
Author(s):  
Giandomenico Amendola ◽  
Giovanni Angiulli ◽  
Emilio Arnieri ◽  
Luigi Boccia ◽  
Domenico De Carlo

2013 ◽  
Vol 712-715 ◽  
pp. 2538-2541
Author(s):  
Cao Wei ◽  
Zheng Hua Wang ◽  
Chuan Fu Xu

In recent years, the highly parallel graphics processing unit (GPU) is rapidly gaining maturity as a powerful engine for high performance computer. More and more researchers try to port the computational fluid dynamics (CFD) simulations into heterogeneous computers. However, most researchers focus on exploring the computational capability of GPU, while ignore the computational capability of CPU. In order to utilize the computational capability of CPU and GPU, we propose a hybrid CUDA/OpenMP parallel programming model. And we proposed an adaptive load balancing scheme to distribute the workload among CPUs and GPUs. With this programming model, we implement a high-order CFD program on “Tianhe-1A” supercomputer system. The performance results validate the workload distribution scheme.


Sign in / Sign up

Export Citation Format

Share Document