Markovian property for the delays in multiclass deterministic flow lines with random arrivals

Author(s):  
Sang-Yoon Bae ◽  
James R. Morrison
2014 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Peyman Sabzi ◽  
Saheb Noroozi

Gas hydrates formation is considered as one the greatest obstacles in gas transportation systems. Problems related to gas hydrate formation is more severe when dealing with transportation at low temperatures of deep water. In order to avoid formation of Gas hydrates, different inhibitors are used. Methanol is one of the most common and economically efficient inhibitor. Adding methanol to the flow lines, changes the thermodynamic equilibrium situation of the system. In order to predict these changes in thermodynamic behavior of the system, a series of modelings are performed using Matlab software in this paper. The main approach in this modeling is on the basis of Van der Waals and Plateau's thermodynamic approach. The obtained results of a system containing water, Methane and Methanol showed that hydrate formation pressure increases due to the increase of inhibitor amount in constant temperature and this increase is more in higher temperatures. Furthermore, these results were in harmony with the available empirical data.Keywords: Gas hydrates, thermodynamic inhibitor, modelling, pipeline blockage


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 456
Author(s):  
Dongsheng Qian ◽  
Chengfei Ma ◽  
Feng Wang

Hot rolling is an essential process for the shape-forming of bearing steel. It plays a significant role in the formation and distribution of flow lines. In this work, the effect of flow lines is investigated by analyzing the microstructure and mechanical anisotropy of hot-rolled bearing steel. It was found that carbides rich with Cr and Mn elements are distributed unevenly along the flow-line direction of the hot-rolled bearing steel. Moreover, the mechanical characterization indicates that ultimate tensile strength and yield strength do not have any significant difference in two directions. Nevertheless, an ultrahigh section shrinkage of 57.51% is obtained in the 0° sample that has parallel flow lines, while 90° sample shows poor section shrinkage. The uneven distributed carbides will affect the direction and speed of crack propagation during tensile deformation. Therefore, the 0° and 90° samples exhibit great difference in plastic property. Meanwhile, after tensile deformation, a delaminated texture is observed in the flow lines, which may be caused by different degrees of deformation of grains due to the uneven distribution of carbides. The results of this work may provide guidance for controlling and optimizing flow lines in the manufacturing of bearing rings.


2009 ◽  
Vol 91 (2) ◽  
pp. 85-99 ◽  
Author(s):  
CHEN-HUNG KAO ◽  
MIAO-HUI ZENG

SummaryIn genetic and biological studies, the F2 population is one of the most popular and commonly used experimental populations mainly because it can be readily produced and its genome structure possesses several niceties that allow for productive investigation. These niceties include the equivalence between the proportion of recombinants and recombination rates, the capability of providing a complete set of three genotypes for every locus and an analytically attractive first-order Markovian property. Recently, there has been growing interest in using the progeny populations from F2 (advanced populations) because their genomes can be managed to meet specific purposes or can be used to enhance investigative studies. These advanced populations include recombinant inbred populations, advanced intercrossed populations, intermated recombinant inbred populations and immortalized F2 populations. Due to an increased number of meiosis cycles, the genomes of these advanced populations no longer possess the Markovian property and are relatively more complicated and different from the F2 genomes. Although issues related to quantitative trait locus (QTL) mapping using advanced populations have been well documented, still these advanced populations are often investigated in a manner similar to the way F2 populations are studied using a first-order Markovian assumption. Therefore, more efforts are needed to address the complexities of these advanced populations in more details. In this article, we attempt to tackle these issues by first modifying current methods developed under this Markovian assumption to propose an ad hoc method (the Markovian method) and explore its possible problems. We then consider the specific genome structures present in the advanced populations without invoking this assumption to propose a more adequate method (the non-Markovian method) for QTL mapping. Further, some QTL mapping properties related to the confounding problems that result from ignoring epistasis and to mapping closely linked QTL are derived and investigated across the different populations. Simulations show that the non-Markovian method outperforms the Markovian method, especially in the advanced populations subject to selfing. The results presented here may give some clues to the use of advanced populations for more powerful and precise QTL mapping.


1982 ◽  
Vol 104 (3) ◽  
pp. 319-325 ◽  
Author(s):  
Y. Kita ◽  
M. Ido ◽  
N. Kawasaki

Although the chip formation mechanism by a tool having a large negative rake angle is not well known, it is very important to make the process clear in order to get high quality in finished surfaces. In this paper, the behavior of material ahead of a tool face with a large negative rake angle is examined by means of low speed machining on lead. The deformation process of the material is investigated by the deformation study combining a finite element method with a grid line method. During cutting, the deformation process of grid lines which were drawn on the sides of testpieces was observed through a side glass which restricted the side flow of material. Cutting force was measured by a dynamometer consisting of an elongated octagonal ring with strain wire gages. As a result it was found that the shear stress on the slip line of maximum increment of shear strain is nearly constant, but the compressive stress changes along the line. It was concave near the top of cutting edge and convex near the surface of the test piece. The position of the change of polarity in the slope shifted depending on the rake angle of the tool. This phenomenon is considered to have close relation with the stagnant tip, which decides not only the size of chip, but also whether or not a chip will be formed. Flow lines of material and the deformed region ahead of tool faces with different negative rake angles were also obtained and they were compared with each other.


2015 ◽  
Vol 50 (3) ◽  
pp. 236-247 ◽  
Author(s):  
G. Koch ◽  
F. Ayello ◽  
V. Khare ◽  
N. Sridhar ◽  
A. Moosavi

Sign in / Sign up

Export Citation Format

Share Document