An evacuation guider location optimization method based on road network centrality measures

Author(s):  
Zhiling Liu ◽  
Qing-Shan Jia ◽  
Hui Zhang
Author(s):  
Qi D. Van Eikema Hommes

As the content and variety of technology increases in automobiles, the complexity of the system increases as well. Decomposing systems into modules is one of the ways to manage and reduce system complexity. This paper surveys and compares a number of state-of-art components modularity metrics, using 8 sample test systems. The metrics include Whitney Index (WI), Change Cost (CC), Singular value Modularity Index (SMI), Visibility-Dependency (VD) plot, and social network centrality measures (degree, distance, bridging). The investigation reveals that WI and CC form a good pair of metrics that can be used to assess component modularity of a system. The social network centrality metrics are useful in identifying areas of architecture improvements for a system. These metrics were further applied to two actual vehicle embedded software systems. The first system is going through an architecture transformation. The metrics from the old system revealed the need for the improvements. The second system was recently architected, and the metrics values showed the quality of the architecture as well as areas for further improvements.


2016 ◽  
Vol 107 (3) ◽  
pp. 1005-1020 ◽  
Author(s):  
Saikou Y. Diallo ◽  
Christopher J. Lynch ◽  
Ross Gore ◽  
Jose J. Padilla

2019 ◽  
Vol 51 (5) ◽  
pp. 1-32 ◽  
Author(s):  
Felipe Grando ◽  
Lisandro Z. Granville ◽  
Luis C. Lamb

2019 ◽  
Author(s):  
Donald Salami ◽  
Carla Alexandra Sousa ◽  
Maria do Rosário Oliveira Martins ◽  
César Capinha

ABSTRACTThe geographical spread of dengue is a global public health concern. This is largely mediated by the importation of dengue from endemic to non-endemic areas via the increasing connectivity of the global air transport network. The dynamic nature and intrinsic heterogeneity of the air transport network make it challenging to predict dengue importation.Here, we explore the capabilities of state-of-the-art machine learning algorithms to predict dengue importation. We trained four machine learning classifiers algorithms, using a 6-year historical dengue importation data for 21 countries in Europe and connectivity indices mediating importation and air transport network centrality measures. Predictive performance for the classifiers was evaluated using the area under the receiving operating characteristic curve, sensitivity, and specificity measures. Finally, we applied practical model-agnostic methods, to provide an in-depth explanation of our optimal model’s predictions on a global and local scale.Our best performing model achieved high predictive accuracy, with an area under the receiver operating characteristic score of 0.94 and a maximized sensitivity score of 0.88. The predictor variables identified as most important were the source country’s dengue incidence rate, population size, and volume of air passengers. Network centrality measures, describing the positioning of European countries within the air travel network, were also influential to the predictions.We demonstrated the high predictive performance of a machine learning model in predicting dengue importation and the utility of the model-agnostic methods to offer a comprehensive understanding of the reasons behind the predictions. Similar approaches can be utilized in the development of an operational early warning surveillance system for dengue importation.


SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Yixuan Wang ◽  
Faruk Alpak ◽  
Guohua Gao ◽  
Chaohui Chen ◽  
Jeroen Vink ◽  
...  

Summary Although it is possible to apply traditional optimization algorithms to determine the Pareto front of a multiobjective optimization problem, the computational cost is extremely high when the objective function evaluation requires solving a complex reservoir simulation problem and optimization cannot benefit from adjoint-based gradients. This paper proposes a novel workflow to solve bi-objective optimization problems using the distributed quasi-Newton (DQN) method, which is a well-parallelized and derivative-free optimization (DFO) method. Numerical tests confirm that the DQN method performs efficiently and robustly. The efficiency of the DQN optimizer stems from a distributed computing mechanism that effectively shares the available information discovered in prior iterations. Rather than performing multiple quasi-Newton optimization tasks in isolation, simulation results are shared among distinct DQN optimization tasks or threads. In this paper, the DQN method is applied to the optimization of a weighted average of two objectives, using different weighting factors for different optimization threads. In each iteration, the DQN optimizer generates an ensemble of search points (or simulation cases) in parallel, and a set of nondominated points is updated accordingly. Different DQN optimization threads, which use the same set of simulation results but different weighting factors in their objective functions, converge to different optima of the weighted average objective function. The nondominated points found in the last iteration form a set of Pareto-optimal solutions. Robustness as well as efficiency of the DQN optimizer originates from reliance on a large, shared set of intermediate search points. On the one hand, this set of searching points is (much) smaller than the combined sets needed if all optimizations with different weighting factors would be executed separately; on the other hand, the size of this set produces a high fault tolerance, which means even if some simulations fail at a given iteration, the DQN method’s distributed-parallelinformation-sharing protocol is designed and implemented such that the optimization process can still proceed to the next iteration. The proposed DQN optimization method is first validated on synthetic examples with analytical objective functions. Then, it is tested on well-location optimization (WLO) problems by maximizing the oil production and minimizing the water production. Furthermore, the proposed method is benchmarked against a bi-objective implementation of the mesh adaptive direct search (MADS) method, and the numerical results reinforce the auspicious computational attributes of DQN observed for the test problems. To the best of our knowledge, this is the first time that a well-parallelized and derivative-free DQN optimization method has been developed and tested on bi-objective optimization problems. The methodology proposed can help improve efficiency and robustness in solving complicated bi-objective optimization problems by taking advantage of model-based search algorithms with an effective information-sharing mechanism. NOTE: This paper is published as part of the 2021 SPE Reservoir Simulation Conference Special Issue.


2013 ◽  
Vol 479-480 ◽  
pp. 126-130 ◽  
Author(s):  
Kun Nan Chen ◽  
Wen Der Ueng

This paper proposed a gate location optimization scheme to minimize the maximum injection pressure in plastic injection molding. The method utilized a series of higher order response surface approximations (RSA) to model the maximum injection pressure distribution with respect to gate locations, and the global minimum of these response surface models were subsequently sought by a global optimization method based on a multi-start sequential quadratic programming technique. The design points for RSA were evaluated by the finite element method. After a sequence of repetitions of RSA and optimization, the converged minimizer would represent the optimal gate location. A rectangular plate with two segments of different thicknesses was selected to demonstrate the effectiveness of the procedure. The variation of the thicknesses causes the optimal gate location to deviate from the center and induce multiple valleys in the maximum injection pressure distribution, which is ideal for the application of the higher order RSA and a global searching technique.


Sign in / Sign up

Export Citation Format

Share Document