High-gain Boost-Boost-Flyback converter for renewable energy sources applications

Author(s):  
Andre Elias Lucena da Costa ◽  
Romero Leandro Andersen
Author(s):  
Vulisi Narendra Kumar ◽  
Gayadhar Panda ◽  
Bonu Ramesh Naidu

The growing demand for electrical energy calls for the assimilation of renewable energy sources to the main utility grid. Multiple renewable energy sources (RESs) like solar PV array, wind turbine, micro-hydro plant, etc. can be combined and controlled to form a microgrid. In spite of the availability of different microgrid topologies, DC microgrid largely facilitates the injection of DC power from various renewable energy sources into the stabilised DC power pool. The requirement for a minimal number of conversion stages, simple structure, economic operation, and numerous localised applications are driving factors for the DC microgrid technology. The mettle of the DC microgrid technology lies in choosing the appropriate microgrid participants for energy interchange and the suitable supervisory control to tap power from the microgrid partakers even after respecting their operating constraints. The use of high gain DC-DC converters is inevitable in DC microgrid due to the low terminal voltage levels of different RESs.


2022 ◽  
pp. 253-292
Author(s):  
Vulisi Narendra Kumar ◽  
Gayadhar Panda ◽  
Bonu Ramesh Naidu

The growing demand for electrical energy calls for the assimilation of renewable energy sources to the main utility grid. Multiple renewable energy sources (RESs) like solar PV array, wind turbine, micro-hydro plant, etc. can be combined and controlled to form a microgrid. In spite of the availability of different microgrid topologies, DC microgrid largely facilitates the injection of DC power from various renewable energy sources into the stabilised DC power pool. The requirement for a minimal number of conversion stages, simple structure, economic operation, and numerous localised applications are driving factors for the DC microgrid technology. The mettle of the DC microgrid technology lies in choosing the appropriate microgrid participants for energy interchange and the suitable supervisory control to tap power from the microgrid partakers even after respecting their operating constraints. The use of high gain DC-DC converters is inevitable in DC microgrid due to the low terminal voltage levels of different RESs.


Author(s):  
Vulisi Narendra Kumar ◽  
Gayadhar Panda ◽  
Bonu Ramesh Naidu

The growing demand for electrical energy calls for the assimilation of renewable energy sources to the main utility grid. Multiple renewable energy sources (RESs) like solar PV array, wind turbine, micro-hydro plant, etc. can be combined and controlled to form a microgrid. In spite of the availability of different microgrid topologies, DC microgrid largely facilitates the injection of DC power from various renewable energy sources into the stabilised DC power pool. The requirement for a minimal number of conversion stages, simple structure, economic operation, and numerous localised applications are driving factors for the DC microgrid technology. The mettle of the DC microgrid technology lies in choosing the appropriate microgrid participants for energy interchange and the suitable supervisory control to tap power from the microgrid partakers even after respecting their operating constraints. The use of high gain DC-DC converters is inevitable in DC microgrid due to the low terminal voltage levels of different RESs.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 625 ◽  
Author(s):  
Edgardo Netzahuatl-Huerta ◽  
Leobardo Hernandez-Gonzalez ◽  
Domingo Cortes ◽  
Jazmin Ramirez-Hernandez

The use of different sources to energize a load is convenient in many applications, particularly those where two or more renewable energy sources are employed, such as energy harvesting, hybrid vehicles, and off-grid systems. In these cases, a multi-input converter is able to admit sources with different characteristics and, if necessary, select the output power of each source. Several topologies of multi-input converters have been proposed to this aim; however, most of them are based on multistage designs, which decreases efficiency and increases control complexity, particularly when more than two sources are used. In this work, a three-input step-up converter, easy to control in open loop condition, is analyzed. A designed procedure is described, and experimental results are presented for a 1 kW power converter. The implemented converter results in a higher voltage gain and less storage element, keeping high efficiency compared to similar topologies. Using the procedure here proposed, this converter that was initially designed for photovoltaic applications is enabled to be used in medium- and high-power applications, for example, when renewable energy sources are used.


2019 ◽  
Vol 25 (3) ◽  
pp. 50-55 ◽  
Author(s):  
Davood Ghaderi ◽  
Gokay Bayrak

Renewable Energy Sources (RES) including full cells, wind turbines, and photovoltaic panels, widely are spreading. Among all the renewable energy sources, solar power generation system tops the list. The first choice is the boost converter when the voltage step-up is the issue. But the most important subject is applying an efficient structure with high gain, cheap and quick controller circuit. Our proposed cascaded boost converter is one of such converters which consists of several cheap components such as diode, inductor, capacitor and power switch, which has same switching frequency and phase shift in comparison with conventional boost converters. In comparison with the classic cascaded boost converter, the voltage gain for the proposed structure is very high and by forming a preamplifier layer, for a duty cycle of 80 % by adding only two diodes, one inductor, and one capacitor for the second block, voltage gain is increased by 5 times compared to the classic boost converter. The proposed method provides the increased output voltage along with the duty cycle. The projected strategy has been verified with the help of Matlab/Simulink. Also, a hardware implementation of the proposed converter has been done around 200 W by applying a Jiangyin HR-200W-24V type solar panel.


Author(s):  
Jaikrishna V ◽  
Subhranhsu Sekhar Dash ◽  
Linss T Alex ◽  
R. Sridhar

The importance of extracting power from renewable energy sources are increasing in the modern world as the power demand is increasing day by day and the non renewable energy sources are getting dried up. Solar power is a domestic source of energy and its availability throughout the year makes it a primary target to solve this crisis. It will never produce any hazardous waste or pollution. But various issues like Power quality problems and Harmonic distortion seep in due to the intermittent nature of PV system. This paper proposes a cascaded H–bridge multilevel inverter for grid connected PV system with a flyback converter. This helps to achieve maximum power point tracking and also provides isolation which will further help to increase system efficiency. The DC–DC flyback converters are cascaded to generate multilevel output voltage. Then this multilevel dc output is given to H bridge inverter to generate multilevel output. A new control algorithm is used in this paper which combines voltage–hold Perturb and observe method and modified PWM algorithm which helps to achieve the best MPPT. The proposed topology is implemented in PSIM. The Simulation and Hardware results reveal that the suggested technique is highly.


Author(s):  
Suvetha Poyyamani Sunddararaj ◽  
Seyezhai Ramalingam

The increasing demand for electricity has pushed more effort to focus on renewable energy sources to satisfy the consumer. The renewable energy sources are playing a major role in the generation of electricity. Out of all the renewable energy sources, solar has emerged as one of the best sources of energy since it is clean, inexhaustible and eco-friendly. However, the voltage generated by the solar cell is not sufficient for any consumer load and it is also variable. Therefore, it is necessary to implement DCDC converters for regulating and improving the output voltage of the solar panel. In order to extract the maximum output from the PV (Photovoltaic) panel, a comparative analysis of various MPPT (Maximum Power Point Tracking) algorithms is proposed in this paper. The proposed enhanced adaptive P&O (Perturb and Observe) algorithm is modeled and implemented with a high gain DC-DC converter. The converter investigated in this paper consists of a single power electronic switch (MOSFET) for its operation, which leads to reduction of switching and conduction losses. The proposed converter has less ripple content and a high conversion ratio. A simulation study of the proposed power electronic converter powered by PV source is carried out in MATLAB/SIMULINK and the results are validated using an experimental setup.


Sign in / Sign up

Export Citation Format

Share Document