scholarly journals A Novel Step-Up Power Converter Configuration for Solar Energy Application

2019 ◽  
Vol 25 (3) ◽  
pp. 50-55 ◽  
Author(s):  
Davood Ghaderi ◽  
Gokay Bayrak

Renewable Energy Sources (RES) including full cells, wind turbines, and photovoltaic panels, widely are spreading. Among all the renewable energy sources, solar power generation system tops the list. The first choice is the boost converter when the voltage step-up is the issue. But the most important subject is applying an efficient structure with high gain, cheap and quick controller circuit. Our proposed cascaded boost converter is one of such converters which consists of several cheap components such as diode, inductor, capacitor and power switch, which has same switching frequency and phase shift in comparison with conventional boost converters. In comparison with the classic cascaded boost converter, the voltage gain for the proposed structure is very high and by forming a preamplifier layer, for a duty cycle of 80 % by adding only two diodes, one inductor, and one capacitor for the second block, voltage gain is increased by 5 times compared to the classic boost converter. The proposed method provides the increased output voltage along with the duty cycle. The projected strategy has been verified with the help of Matlab/Simulink. Also, a hardware implementation of the proposed converter has been done around 200 W by applying a Jiangyin HR-200W-24V type solar panel.

2021 ◽  
Vol 13 (19) ◽  
pp. 11059
Author(s):  
Shahrukh Khan ◽  
Arshad Mahmood ◽  
Mohammad Zaid ◽  
Mohd Tariq ◽  
Chang-Hua Lin ◽  
...  

High gain DC-DC converters are getting popular due to the increased use of renewable energy sources (RESs). Common ground between the input and output, low voltage stress across power switches and high voltage gain at lower duty ratios are desirable features required in any high gain DC-DC converter. DC-DC converters are widely used in DC microgrids to supply power to meet local demands. In this work, a high step-up DC-DC converter is proposed based on the voltage lift (VL) technique using a single power switch. The proposed converter has a voltage gain greater than a traditional boost converter (TBC) and Traditional quadratic boost converter (TQBC). The effect of inductor parasitic resistances on the voltage gain of the converter is discussed. The losses occurring in various components are calculated using PLECS software. To confirm the performance of the converter, a hardware prototype of 200 W is developed in the laboratory. The simulation and hardware results are presented to determine the performance of the converter in both open-loop and closed-loop conditions. In closed-loop operation, a PI controller is used to maintain a constant output voltage when the load or input voltage is changed.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 625 ◽  
Author(s):  
Edgardo Netzahuatl-Huerta ◽  
Leobardo Hernandez-Gonzalez ◽  
Domingo Cortes ◽  
Jazmin Ramirez-Hernandez

The use of different sources to energize a load is convenient in many applications, particularly those where two or more renewable energy sources are employed, such as energy harvesting, hybrid vehicles, and off-grid systems. In these cases, a multi-input converter is able to admit sources with different characteristics and, if necessary, select the output power of each source. Several topologies of multi-input converters have been proposed to this aim; however, most of them are based on multistage designs, which decreases efficiency and increases control complexity, particularly when more than two sources are used. In this work, a three-input step-up converter, easy to control in open loop condition, is analyzed. A designed procedure is described, and experimental results are presented for a 1 kW power converter. The implemented converter results in a higher voltage gain and less storage element, keeping high efficiency compared to similar topologies. Using the procedure here proposed, this converter that was initially designed for photovoltaic applications is enabled to be used in medium- and high-power applications, for example, when renewable energy sources are used.


Author(s):  
Vulisi Narendra Kumar ◽  
Gayadhar Panda ◽  
Bonu Ramesh Naidu

The growing demand for electrical energy calls for the assimilation of renewable energy sources to the main utility grid. Multiple renewable energy sources (RESs) like solar PV array, wind turbine, micro-hydro plant, etc. can be combined and controlled to form a microgrid. In spite of the availability of different microgrid topologies, DC microgrid largely facilitates the injection of DC power from various renewable energy sources into the stabilised DC power pool. The requirement for a minimal number of conversion stages, simple structure, economic operation, and numerous localised applications are driving factors for the DC microgrid technology. The mettle of the DC microgrid technology lies in choosing the appropriate microgrid participants for energy interchange and the suitable supervisory control to tap power from the microgrid partakers even after respecting their operating constraints. The use of high gain DC-DC converters is inevitable in DC microgrid due to the low terminal voltage levels of different RESs.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1480 ◽  
Author(s):  
Javier Loranca-Coutiño ◽  
Carlos A. Villarreal-Hernandez ◽  
Jonathan C. Mayo-Maldonado ◽  
Jesús E. Valdez-Resendiz ◽  
Adolfo R. Lopez-Nuñez ◽  
...  

This work presents a power-electronics based system for renewable energy applications, the system is driven with an only one switch quadratic type boost converter, the discussed converter is based on a stack of switching stages which provide a large voltage gain, a desirable feature for fuel cell generation systems, the converters gain function is the quadratic boost-type converters; furthermore, the topology can be extended. The major benefit of the topology is that there is not a capacitor that sustains the entire output voltage, in contrast to other similar topologies in which there is a capacitor rated to the output port voltage, there is no high voltage capacitor in this system. Experimental verification is presented to confirm the system principles; experiments included a fuel cell emulator that was built and used for the experiments.


Sign in / Sign up

Export Citation Format

Share Document