The Doherty Power Amplifier: Design strategy

Author(s):  
Jorge Julian Moreno-Rubio ◽  
Edison Ferney Angarita-Malaver
Author(s):  
Mussa Mabrok ◽  
Zahriladha Zakaria ◽  
Tole Sutikno

Doherty power amplifier (DPA) with high efficiency at the output power back off is highly demanded for modern wireless communication systems to achieve high data rates and reduce the power consumption and operation costs. This paper presents a new design strategy for enhancing DPA’s back-off efficiency. New design strategy called asymmetrical matching network is used to achieve asymmetric operation, which helps to compensate for the low power delivered by the peaking stage in the conventional DPA. The simulation results showed an enhancement in the back-off efficiency, where the proposed design is able toachieve 46-52% drain efficiency at 8 dB output power back-off while maintains high efficiency of 73-80 % at saturation over the designed bandwidth of 3.4-3.6 GHz. The proposed design is suitable for high efficiency sub-6 GHz fifth-generation wireless applications.<br /><div> </div>


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Saeedeh Lotfi ◽  
Saeed Roshani ◽  
Sobhan Roshani ◽  
Maryam Shirzadian Gilan

Abstract This paper presents a new Doherty power amplifier (DPA) with harmonics suppression. A Wilkinson power divider (WPD) with open-ended and short-ended stubs is designed to suppress unwanted signals. To design the power divider in the circuit of the DPA, even and odd mode analyses are utilized. The proposed design operates at range of 1.2–1.6 GHz. The linearity of the suggested DPA is increased about 6 dBm, in comparison with the main amplifier. The designed Doherty amplifier has a power added efficiency (PAE), drain efficiency (DE) and Gain about 60, 61% and 19 dB, respectively. The designed WPD suppresses 2nd up to 14th harmonics with more than 20 dB suppression level, which is useful for suppressing unwanted harmonics in DPA design. ATF-34143 transistors (pHEMT technology) are used for this DPA amplifier design. The main amplifier has class-F topology and class-F inverse topology is used for auxiliary amplifier.


Sign in / Sign up

Export Citation Format

Share Document