Modeling and Analysis of Average Torque Control Strategy on Switched Reluctance Motor for E-mobility

Author(s):  
Aishwarya Pillai ◽  
Anuradha S ◽  
K. V. Gangadharan ◽  
Pruthviraj Umesht ◽  
Sandesh Bhaktha
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Cunhe Li ◽  
Cunshan Zhang ◽  
Jian Liu ◽  
Dunxin Bian

This paper proposes a high-performance indirect control scheme for torque ripple minimization in the switched reluctance motor (SRM) drive system. Firstly, based on the nonlinear torque-angle characteristic of SRM, a novel torque sharing function is developed to obtain the optimal current profiles such that the torque ripple is minimized with reduced copper losses. Secondly, in order to track current accurately and indirectly achieve high-performance torque control, a robust current controller is derived through the Lyapunov stability theory. The proposed robust current controller not only considers the motor parameter modeling errors but also realizes the fixed frequency current control by introducing the pulse width modulation method. Further, a disturbance-observer-based speed controller is derived to regulate the motor speed accurately, and the load torque is considered an unknown disturbance. The simulations and experiments on a 1.5 kW SRM prototype are carried out to demonstrate the effectiveness of the proposed high-performance indirect torque control strategy. Results verify the superiority of the proposed strategy with respect to the torque ripple suppression, system efficiency, and antidisturbance.


Sign in / Sign up

Export Citation Format

Share Document