Stable round-robin scheduling algorithms for high-performance input queued switches

Author(s):  
Jing Liu ◽  
Hung Chun Kit ◽  
M. Hamdi ◽  
Chi Ying Tsui
2022 ◽  
Vol 15 (1) ◽  
pp. 1-31
Author(s):  
Philippos Papaphilippou ◽  
Jiuxi Meng ◽  
Nadeen Gebara ◽  
Wayne Luk

We present Hipernetch, a novel FPGA-based design for performing high-bandwidth network switching. FPGAs have recently become more popular in data centers due to their promising capabilities for a wide range of applications. With the recent surge in transceiver bandwidth, they could further benefit the implementation and refinement of network switches used in data centers. Hipernetch replaces the crossbar with a “combined parallel round-robin arbiter”. Unlike a crossbar, the combined parallel round-robin arbiter is easy to pipeline, and does not require centralised iterative scheduling algorithms that try to fit too many steps in a single or a few FPGA cycles. The result is a network switch implementation on FPGAs operating at a high frequency and with a low port-to-port latency. Our proposed Hipernetch architecture additionally provides a competitive switching performance approaching output-queued crossbar switches. Our implemented Hipernetch designs exhibit a throughput that exceeds 100 Gbps per port for switches of up to 16 ports, reaching an aggregate throughput of around 1.7 Tbps.


Author(s):  
Sonia Zouaoui ◽  
Lotfi Boussaid ◽  
Abdellatif Mtibaa

<p>This paper introduce a new approach for scheduling algorithms which aim to improve real time operating system CPU performance. This new approach of CPU Scheduling algorithm is based on the combination of round-robin (RR) and Priority based (PB) scheduling algorithms. This solution maintains the advantage of simple round robin scheduling algorithm, which is reducing starvation and integrates the advantage of priority scheduling. The proposed algorithm implements the concept of time quantum and assigning as well priority index to the processes. Existing round robin CPU scheduling algorithm cannot be dedicated to real time operating system due to their large waiting time, large response time, large turnaround time and less throughput. This new algorithm improves all the drawbacks of round robin CPU scheduling algorithm. In addition, this paper presents analysis comparing proposed algorithm with existing round robin scheduling algorithm focusing on average waiting time and average turnaround time.</p>


Author(s):  
Hasta Triangga ◽  
Ilham Faisal ◽  
Imran Lubis

In IT networking, load balancing used to share the traffic between backend servers. The idea is to make effective and efficient load sharing. Load balancing uses scheduling algorithms in the process includes Static round-robin and Least-connection algorithm. Haproxy is a load balancer that can be used to perform the load balancing technique and run by Linux operating systems. In this research, Haproxy uses 4 Nginx web server as backend servers. Haproxy act as a reverse proxy which accessed by the client while the backend servers handle HTTP requests. The experiment involves 20 Client PCs that are used to perform HTTP requests simultaneously, using the Static round-robin algorithm and Least-connection on the haproxy load balancer alternately. When using Static round-robin algorithm, the results obtained average percentages of CPU usage successively for 1 minute; 5 minutes; and 15 minutes are; 0.1%; 0.25%; and 1.15% with average throughput produced is 14.74 kbps. Average total delay produced 64.3 kbps. The average total delay and jitter is 181.3 ms and 11.1 ms, respectively. As for the Least-connection algorithm average percentage obtained successively for 1 minute; 5 minutes; and 15 minutes are 0.1%; 0.3%; and 1.25% with the average throughput produced is 14.66 kbps. The average total delay and jitter is 350.3 ms and 24.5 ms, respectively. It means Static round-robin algorithm is more efficient than the algorithms Least-connection because it can produce a greater throughput with less CPU load and less total delay.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 868
Author(s):  
B Thirumala Rao ◽  
M Susmitha ◽  
T Swathi ◽  
G Akhil

The paper focusses on priority based round robin scheduling algorithm for scheduling jobs in Hadoop environment. By Using this Proposed Scheduling Algorithm it reduces the starvation of jobs. And the advantage of priority scheduling is that the process with the highest priority will be executed first. Combining the both strategies of round robin and priority scheduling algorithm a optimized algorithm is to be implemented. Which works more efficiently even after considering all the parameters of scheduling algorithm. This proposed algorithm is also compared with existing round robin and priority scheduling algorithms.  


Sign in / Sign up

Export Citation Format

Share Document