Credit Approval System Using Machine Learning: Challenges and Future Directions

Author(s):  
Mohammad Fahim Faisal ◽  
Mohammad Neyamath Ullah Saqlain ◽  
Mohammad Arif Sobhan Bhuiyan ◽  
Mahdi H. Miraz ◽  
Muhammed J.A. Patwary
2021 ◽  
Vol 11 (4) ◽  
pp. 1627
Author(s):  
Yanbin Li ◽  
Gang Lei ◽  
Gerd Bramerdorfer ◽  
Sheng Peng ◽  
Xiaodong Sun ◽  
...  

This paper reviews the recent developments of design optimization methods for electromagnetic devices, with a focus on machine learning methods. First, the recent advances in multi-objective, multidisciplinary, multilevel, topology, fuzzy, and robust design optimization of electromagnetic devices are overviewed. Second, a review is presented to the performance prediction and design optimization of electromagnetic devices based on the machine learning algorithms, including artificial neural network, support vector machine, extreme learning machine, random forest, and deep learning. Last, to meet modern requirements of high manufacturing/production quality and lifetime reliability, several promising topics, including the application of cloud services and digital twin, are discussed as future directions for design optimization of electromagnetic devices.


2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


Author(s):  
Joseph D. Romano ◽  
Trang T. Le ◽  
Weixuan Fu ◽  
Jason H. Moore

AbstractAutomated machine learning (AutoML) and artificial neural networks (ANNs) have revolutionized the field of artificial intelligence by yielding incredibly high-performing models to solve a myriad of inductive learning tasks. In spite of their successes, little guidance exists on when to use one versus the other. Furthermore, relatively few tools exist that allow the integration of both AutoML and ANNs in the same analysis to yield results combining both of their strengths. Here, we present TPOT-NN—a new extension to the tree-based AutoML software TPOT—and use it to explore the behavior of automated machine learning augmented with neural network estimators (AutoML+NN), particularly when compared to non-NN AutoML in the context of simple binary classification on a number of public benchmark datasets. Our observations suggest that TPOT-NN is an effective tool that achieves greater classification accuracy than standard tree-based AutoML on some datasets, with no loss in accuracy on others. We also provide preliminary guidelines for performing AutoML+NN analyses, and recommend possible future directions for AutoML+NN methods research, especially in the context of TPOT.


2021 ◽  
Vol 5 (12) ◽  
pp. 73
Author(s):  
Daniel Kerrigan ◽  
Jessica Hullman ◽  
Enrico Bertini

Eliciting knowledge from domain experts can play an important role throughout the machine learning process, from correctly specifying the task to evaluating model results. However, knowledge elicitation is also fraught with challenges. In this work, we consider why and how machine learning researchers elicit knowledge from experts in the model development process. We develop a taxonomy to characterize elicitation approaches according to the elicitation goal, elicitation target, elicitation process, and use of elicited knowledge. We analyze the elicitation trends observed in 28 papers with this taxonomy and identify opportunities for adding rigor to these elicitation approaches. We suggest future directions for research in elicitation for machine learning by highlighting avenues for further exploration and drawing on what we can learn from elicitation research in other fields.


Author(s):  
Nathan Lau ◽  
Lex Fridman ◽  
Brett J. Borghetti ◽  
John D. Lee

As machine learning approaches ubiquity in industrial systems and consumer products, human factors research must attend to machine learning, specifically on how intelligent systems built on machine learning are different from early generations of automated systems, and what these differences mean for human-system interaction, design, evaluation and training. This panel invites five researchers in different domains to discuss how human factors can contribute to machine learning research and applications, as well as how machine learning presents both challenges and contributions for human factors.


2021 ◽  
Author(s):  
Christopher R Wagner ◽  
Timothy Phillips ◽  
Serge Roux ◽  
Joseph P Corrigan

Abstract In this paper, we highlight promising technologies in each phase of a robotic neurosurgery operation, and identify key factors affecting how quickly these technologies will mature into products in the operating room. We focus on specific technology trends in image-guided cranial and spinal procedures, including advances in imaging, machine learning, robotics, and novel interfaces. For each technology, we discuss the required effort to overcome safety or implementation challenges, as well as identifying example regulatory approved products in related fields for comparison. The goal is to provide a roadmap for clinicians as to which robotic and automation technologies are in the developmental pipeline, and which ones are likely to impact their practice sooner, rather than later.


2020 ◽  
Vol 215 (4) ◽  
pp. 920-928
Author(s):  
Burak Kocak ◽  
Ece Ates Kus ◽  
Aytul Hande Yardimci ◽  
Ceyda Turan Bektas ◽  
Ozgur Kilickesmez

Sign in / Sign up

Export Citation Format

Share Document