Two-stage grid-connected inverter for PV systems

Author(s):  
Necmi Altin ◽  
Saban Ozdemir ◽  
Hasan Komurcugil ◽  
Ibrahim Sefa ◽  
Samet Biricik
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 751
Author(s):  
Mariam A. Sameh ◽  
Mostafa I. Marei ◽  
M. A. Badr ◽  
Mahmoud A. Attia

During the day, photovoltaic (PV) systems are exposed to different sunlight conditions in addition to partial shading (PS). Accordingly, maximum power point tracking (MPPT) techniques have become essential for PV systems to secure harvesting the maximum possible power from the PV modules. In this paper, optimized control is performed through the application of relatively newly developed optimization algorithms to PV systems under Partial Shading (PS) conditions. The initial value of the duty cycle of the boost converter is optimized for maximizing the amount of power extracted from the PV arrays. The emperor penguin optimizer (EPO) is proposed not only to optimize the initial setting of duty cycle but to tune the gains of controllers used for the boost converter and the grid-connected inverter of the PV system. In addition, the performance of the proposed system based on the EPO algorithm is compared with another newly developed optimization technique based on the cuttlefish algorithm (CFA). Moreover, particle swarm optimization (PSO) algorithm is used as a reference algorithm to compare results with both EPO and CFA. PSO is chosen since it is an old, well-tested, and effective algorithm. For the evaluation of performance of the proposed PV system using the proposed algorithms under different PS conditions, results are recorded and introduced.


Author(s):  
Naser Vosoughi Kurdkandi ◽  
Milad Ghavipanjeh Marangalu ◽  
Tala Hemmati ◽  
Seyed Hossein Hosseini ◽  
Oleksandr Husev ◽  
...  

2017 ◽  
Vol 32 (11) ◽  
pp. 8559-8569 ◽  
Author(s):  
Ariya Sangwongwanich ◽  
Yongheng Yang ◽  
Frede Blaabjerg

2015 ◽  
Vol 18 (3) ◽  
pp. 192-198
Author(s):  
Huy Minh Nguyen ◽  
Phuong Minh Le ◽  
Phuong Thanh Ho

This paper presents the control model of three phase grid- connected photovoltaic inverter based on the analysis of operating principle of two-stage conventional gridconnected inverter. The mathematical model of inverter under dq frame is set up and the overall control strategy of two-stage photovoltaic grid-connected inverter is proposed in this paper. To overcome the distortion general caused by switching effect on sensors, a Kalman filter is introduced. The control strategy was simulated on Matlab – Simulink to verify the steady and dynamic of model, improving the quality of electrical power to consumers.


Author(s):  
Basem E. Elnaghi ◽  
Mohamed E. Dessouki ◽  
M. N. Abd-Alwahab ◽  
Elwy E. Elkholy

This paper offers a two-stage boost converter for a single-phase inverter without transformer for PV systems. Each stage of the converter is separately controlled by a pulse width modulated signal. A Simulink model of the converter using efficient voltage control topology is developed. The proposed circuit performance characteristics are explained and the obtained simulation results are confirmed through the applied experiments. Moreover, this paper has examined the control circuit of a single-phase inverter that delivers a pure sine wave with an output voltage that has the identical value and frequency as a grid voltage. A microcontroller supported an innovative technology is utilized to come up with a sine wave with fewer harmonics, much less price and an easier outline. A sinusoidal pulse width modulation (SPWM) technique is used by a microcontroller. The developed inverter integrated with the two-stage boost converter has improved the output waveform quality and controlled the dead time as it decreased to 63 µs compared to 180 µs in conventional methods. The system design is reproduced in Proteus and PSIM Software to analyze its operation principle that is confirmed practically.


Author(s):  
R S Ravi Sankar ◽  
S.V. Jayaram Kumar ◽  
K. K. Deepika

<p>This paper presents a Model Predictive Direct Power Control (MPDPC) strategy for a grid-connected inverter used in a photovoltaic system, as found in many distributed generating installations. The controller uses a system model to predict the system behavior at each sampling instant. Using a cost function, the voltage vector with least power ripple is generated. The resultant voltage vector is applied during the next sampling period which gives flexible power regulation. The effectiveness of the proposed MPDPC strategy is verified using MATLAB/ SIMULINK. </p>


2012 ◽  
Vol 535-537 ◽  
pp. 1247-1251
Author(s):  
Xiao Jie Zhou ◽  
Yi Ruan

Nowadays the penetration of PV-generated power energy into the utility grid is increasing exponentially. This paper focuses on two-stage three-phase grid-connected PV systems, which includes modeling of three-phase grid-connected PV systems, grid-connected control strategy of inverter. The inverter based on the grid-voltage oriented vector control used SVPWM-based synchronous current vector PI controllers to control the grid-current of the common point in three-phase grid-connected system. Theoretic analysis and experimental results on a 2.5KW prototype verify the presented algorithm.


Author(s):  
Yiyan Zhang ◽  
Xiaobo Tang ◽  
Zhongyu Shen ◽  
Xiao Chen ◽  
Yulong Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document