Advancements in picosecond resolution time interval measurement techniques

Author(s):  
L. Dobos
2014 ◽  
Vol 21 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Sławomir Grzelak ◽  
Marcin Kowalski ◽  
Jarosław Czoków ◽  
Marek Zieliński

Abstract The designing process of high resolution time interval measurement systems creates many problems that need to be eliminated. The problems are: the latch error, the nonlinearity conversion, the different duty cycle coefficient of the clock signal, and the clock signal jitter. Factors listed above affect the result of measurement. The FPGA (Field Programmable Gate Array) structure also imposes some restrictions, especially when a tapped delay line is constructed. The article describes the high resolution time-to-digital converter, implemented in a FPGA structure, and the types of errors that appear there. The method of minimization and processing of data to reduce the influence of errors on the measurement is also described.


2016 ◽  
Vol 62 (3) ◽  
pp. 237-246 ◽  
Author(s):  
Grzegorz Grzęda ◽  
Ryszard Szplet

Abstract We presents the design and test results of a picosecond-precision time interval measurement module, integrated as a System-on-Chip in an FPGA device. Implementing a complete measurement instrument of a high precision in one chip with the processing unit gives an opportunity to cut down the size of the final product and to lower its cost. Such approach challenges the constructor with several design issues, like reduction of voltage noise, propagating through power lines common for the instrument and processing unit, or establishing buses efficient enough to transport mass measurement data. The general concept of the system, design hierarchy, detailed hardware and software solutions are presented in this article. Also, system test results are depicted with comparison to traditional ways of building a measurement instrument.


Sign in / Sign up

Export Citation Format

Share Document