One-rule Genetic-Fuzzy classifier

Author(s):  
Susan M. Al Naqshbandi ◽  
Venus W. Samawi
Keyword(s):  
2012 ◽  
Vol 58 (4) ◽  
pp. 425-431 ◽  
Author(s):  
D. Selvathi ◽  
N. Emimal ◽  
Henry Selvaraj

Abstract The medical imaging field has grown significantly in recent years and demands high accuracy since it deals with human life. The idea is to reduce human error as much as possible by assisting physicians and radiologists with some automatic techniques. The use of artificial intelligent techniques has shown great potential in this field. Hence, in this paper the neuro fuzzy classifier is applied for the automated characterization of atheromatous plaque to identify the fibrotic, lipidic and calcified tissues in Intravascular Ultrasound images (IVUS) which is designed using sixteen inputs, corresponds to sixteen pixels of instantaneous scanning matrix, one output that tells whether the pixel under consideration is Fibrotic, Lipidic, Calcified or Normal pixel. The classification performance was evaluated in terms of sensitivity, specificity and accuracy and the results confirmed that the proposed system has potential in detecting the respective plaque with the average accuracy of 98.9%.


Author(s):  
Praveen Kumar Dwivedi ◽  
Surya Prakash Tripathi

Background: Fuzzy systems are employed in several fields like data processing, regression, pattern recognition, classification and management as a result of their characteristic of handling uncertainty and explaining the feature of the advanced system while not involving a particular mathematical model. Fuzzy rule-based systems (FRBS) or fuzzy rule-based classifiers (mainly designed for classification purpose) are primarily the fuzzy systems that consist of a group of fuzzy logical rules and these FRBS are unit annexes of ancient rule-based systems, containing the "If-then" rules. During the design of any fuzzy systems, there are two main objectives, interpretability and accuracy, which are conflicting with each another, i.e., improvement in any of those two options causes the decrement in another. This condition is termed as Interpretability –Accuracy Trade-off. To handle this condition, Multi-Objective Evolutionary Algorithms (MOEA) are often applied within the design of fuzzy systems. This paper reviews the approaches to the problem of developing fuzzy systems victimization evolutionary process Multi-Objective Optimization (EMO) algorithms considering ‘Interpretability-Accuracy Trade-off, current research trends and improvement in the design of fuzzy classifier using MOEA in the future scope of authors. Methods: The state-of-the-art review has been conducted for various fuzzy classifier designs, and their optimization is reviewed in terms of multi-objective. Results: This article reviews the different Multi-Objective Optimization (EMO) algorithms in the context of Interpretability -Accuracy tradeoff during fuzzy classification. Conclusion: The evolutionary multi-objective algorithms are being deployed in the development of fuzzy systems. Improvement in the design using these algorithms include issues like higher spatiality, exponentially inhabited solution, I-A tradeoff, interpretability quantification, and describing the ability of the system of the fuzzy domain, etc. The focus of the authors in future is to find out the best evolutionary algorithm of multi-objective nature with efficiency and robustness, which will be applicable for developing the optimized fuzzy system with more accuracy and higher interpretability. More concentration will be on the creation of new metrics or parameters for the measurement of interpretability of fuzzy systems and new processes or methods of EMO for handling I-A tradeoff.


Author(s):  
Anjali Shukla ◽  
Arnab Rakshit ◽  
Amit Konar ◽  
Lidia Ghosh ◽  
Atulya K. Nagar
Keyword(s):  

2009 ◽  
Vol 72 (10-12) ◽  
pp. 2464-2476 ◽  
Author(s):  
Chia-Feng Juang ◽  
Wen-Kai Sun ◽  
Guo-Cyuan Chen

2010 ◽  
Vol 10 (02) ◽  
pp. 327-339
Author(s):  
M. A. CHIKH ◽  
OMAR BEHADADA

This article describes a fuzzy classifier for the identification of premature ventricular complexes (PVCs) in surface electrocardiograms (ECGs). The classifier uses features extracted from the ECG beat, such as the width of QRS complex and RR interval. The performance of the algorithm is evaluated on the MIT-BIH Arrhythmia Database following the AAMI recommendations. The results of the experiments of the recognition of PVCs have confirmed the reliability and advantage of the proposed approach.


Author(s):  
Junpeng Li ◽  
Xiaofei Wei ◽  
Changchun Hua ◽  
Yana Yang ◽  
Limin Zhang

Sign in / Sign up

Export Citation Format

Share Document