Iris Segmentation Approach Based on Adaptive Threshold Value and Circular Hough Transform

Author(s):  
Jwad Ali Ridha ◽  
Jamila Harbi Saud

2016 ◽  
Vol 3 (1) ◽  
pp. 29 ◽  
Author(s):  
ROY DIVYA ANN ◽  
SONI URMILA S. ◽  
◽  


Author(s):  
Kennedy Okokpujie ◽  
Etinosa Noma-Osaghae ◽  
Samuel John ◽  
Akachukwu Ajulibe


2015 ◽  
Vol 1 (1) ◽  
pp. 10
Author(s):  
Rocky Yefrenes Dillak

Sistem biometrika adalah suatu sistem pengenalan diri menggunakan bagian tubuh atau perilaku manusia seperti sidik jari, telapak tangan, telinga, retina, iris mata, wajah, suhu tubuh, tanda tangan, dll. Iris mata merupakan salah satu biometrika yang sangat stabil, handal, akurat dan merupakan metode autentikasi biometrika tercepat  oleh karena itu merupakan suatu topik penelitian yang sangat diminati oleh banyak peneliti. Penelitian ini bertujuan untuk mengembangkan suatu metode yang dapat digunakan untuk mengidentifikasi secara otomatis seseorang berdasarkan citra iris mata miliknya menggunakan jaringan syaraf tiruan levenberg-marquardt. Penelitian ini menggunakan metode deteksi tepi cany dan circular hough transform untuk segmentasi wilayah iris yang terletak diantara pupil dan sclera serta metode ekstraksi ciri gray level cooccurence matrix (GLCM) yang digunakan untuk ekstraksi ciri. Ciri-ciri tersebut adalah maximum probability, correlation, contrast, energy, homogeneity, dan entropy. Ciri-ciri tersebut kemudian dilatih menggunakan jaringan syaraf tiruan dengan aturan pembelajaran levenberg–marquardt algorithm untuk mengidentifikasi seseorang berdasarkan citra irisnya. Penelitian ini menggunakan 150 data citra iris yang masing-masing terbagi atas 100 data citra iris untuk pelatihan dan 50 data citra iris  untuk pengujian. Berdasarkan hasil pengujian yang dilakukan diperoleh correct recognition rate (CRR) sebesar 99.98%  yang menunjukkan bahwa metode ini dapat digunakan untuk mengidentifikasi secara otomatis seseorang berdasarkan citra iris mata miliknya.



2011 ◽  
Vol 204-210 ◽  
pp. 1386-1389
Author(s):  
Deng Yin Zhang ◽  
Li Xiao ◽  
Shun Rong Bo

The existing edge detection algorithms with wavelet transform need to artificially set the threshold value and are lack of flexibility.To salve the limitations, in this paper, we propose a WT(wavelet transform)-based edge detection algorithm with adaptive threshold, which uses threshold value iteration method to achieve adaptive threshold setting. Comparison of experiment results for the CT image shows that the method which improve the clarity and continuity of the image edge can effectively distinguish edge and noise, and get more completely information of the edge. It has good application value in the fields of medical clinical diagnosis and image processing.





2018 ◽  
Vol 7 (2.5) ◽  
pp. 77
Author(s):  
Anis Farihan Mat Raffei ◽  
Rohayanti Hassan ◽  
Shahreen Kasim ◽  
Hishamudin Asmuni ◽  
Asraful Syifaa’ Ahmad ◽  
...  

The quality of eye image data become degraded particularly when the image is taken in the non-cooperative acquisition environment such as under visible wavelength illumination. Consequently, this environmental condition may lead to noisy eye images, incorrect localization of limbic and pupillary boundaries and eventually degrade the performance of iris recognition system. Hence, this study has compared several segmentation methods to address the abovementioned issues. The results show that Circular Hough transform method is the best segmentation method with the best overall accuracy, error rate and decidability index that more tolerant to ‘noise’ such as reflection.  



Sign in / Sign up

Export Citation Format

Share Document