SimML Framework: Monte Carlo Simulation of Statistical Machine Learning Algorithms for IoT Prognostic Applications

Author(s):  
Ashwini R. More ◽  
Kenny C. Gross
2019 ◽  
Vol 8 (1) ◽  
pp. 74-82
Author(s):  
Julius Han Loong Teo ◽  
Noor Alia Noor Hashim ◽  
Azrul Ghazali ◽  
Fazrena Azlee Hamid

The memristor-based arbiter PUF (APUF) has great potential to be used for hardware security purposes. Its advantage is in its challenge-dependent delays, which cannot be modeled by machine learning algorithms. In this paper, further improvement is proposed, which are circuit configurations to the memristor-based APUF. Two configuration aspects were introduced namely varying the number of memristor per transistor, and the number of challenge and response bits. The purpose of the configurations is to introduce additional variation to the PUF, thereby improve PUF performance in terms of uniqueness, uniformity, and bit-aliasing; as well as resistance against support vector machine (SVM). Monte Carlo simulations were carried out on 180 nm and 130 nm, where both CMOS technologies have produced uniqueness, uniformity, and bit-aliasing values close to the ideal 50%; as well as SVM prediction accuracies no higher than 52.3%, therefore indicating excellent PUF performance.


Livers ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 294-312
Author(s):  
Fahad Mostafa ◽  
Easin Hasan ◽  
Morgan Williamson ◽  
Hafiz Khan

Medical diagnoses have important implications for improving patient care, research, and policy. For a medical diagnosis, health professionals use different kinds of pathological methods to make decisions on medical reports in terms of the patients’ medical conditions. Recently, clinicians have been actively engaged in improving medical diagnoses. The use of artificial intelligence and machine learning in combination with clinical findings has further improved disease detection. In the modern era, with the advantage of computers and technologies, one can collect data and visualize many hidden outcomes such as dealing with missing data in medical research. Statistical machine learning algorithms based on specific problems can assist one to make decisions. Machine learning (ML), data-driven algorithms can be utilized to validate existing methods and help researchers to make potential new decisions. The purpose of this study was to extract significant predictors for liver disease from the medical analysis of 615 humans using ML algorithms. Data visualizations were implemented to reveal significant findings such as missing values. Multiple imputations by chained equations (MICEs) were applied to generate missing data points, and principal component analysis (PCA) was used to reduce the dimensionality. Variable importance ranking using the Gini index was implemented to verify significant predictors obtained from the PCA. Training data (ntrain=399) for learning and testing data (ntest=216) in the ML methods were used for predicting classifications. The study compared binary classifier machine learning algorithms (i.e., artificial neural network, random forest (RF), and support vector machine), which were utilized on a published liver disease data set to classify individuals with liver diseases, which will allow health professionals to make a better diagnosis. The synthetic minority oversampling technique was applied to oversample the minority class to regulate overfitting problems. The RF significantly contributed (p<0.001) to a higher accuracy score of 98.14% compared to the other methods. Thus, this suggests that ML methods predict liver disease by incorporating the risk factors, which may improve the inference-based diagnosis of patients.


2021 ◽  
Author(s):  
V. N. Aditya Datta Chivukula ◽  
Sri Keshava Reddy Adupala

Machine learning techniques have become a vital part of every ongoing research in technical areas. In recent times the world has witnessed many beautiful applications of machine learning in a practical sense which amaze us in every aspect. This paper is all about whether we should always rely on deep learning techniques or is it really possible to overcome the performance of simple deep learning algorithms by simple statistical machine learning algorithms by understanding the application and processing the data so that it can help in increasing the performance of the algorithm by a notable amount. The paper mentions the importance of data pre-processing than that of the selection of the algorithm. It discusses the functions involving trigonometric, logarithmic, and exponential terms and also talks about functions that are purely trigonometric. Finally, we discuss regression analysis on music signals.


2022 ◽  
Vol 12 (2) ◽  
pp. 581
Author(s):  
Denny Thaler ◽  
Leonard Elezaj ◽  
Franz Bamer ◽  
Bernd Markert

The evaluation of structural response constitutes a fundamental task in the design of ground-excited structures. In this context, the Monte Carlo simulation is a powerful tool to estimate the response statistics of nonlinear systems, which cannot be represented analytically. Unfortunately, the number of samples which is required for estimations with high confidence increases disproportionally to obtain a reliable estimation of low-probability events. As a consequence, the Monte Carlo simulation becomes a non-realizable task from a computational perspective. We show that the application of machine learning algorithms significantly lowers the computational burden of the Monte Carlo method. We use artificial neural networks to predict structural response behavior using supervised learning. However, one shortcoming of supervised learning is the inability of a sufficiently accurate prediction when extrapolating to data the neural network has not seen yet. In this paper, neural networks predict the response of structures subjected to non-stationary ground excitations. In doing so, we propose a novel selection process for the training data to provide the required samples to reliably predict rare events. We, finally, prove that the new strategy results in a significant improvement of the prediction of the response statistics in the tail end of the distribution.


Sign in / Sign up

Export Citation Format

Share Document