The Application of Data Transmission in the CNC Machine Tools' Fault Warning and Diagnostic System Development

Author(s):  
Guo Zhiping ◽  
Song Zhiyong ◽  
Yan Jiming ◽  
Shi Rongbo
Author(s):  
Roberto Pérez ◽  
Arturo Molina ◽  
Miguel Ramírez-Cadena

In the present, the technology related to the micro/meso manufacturing is promising as a key enabling technology for maximizing high value manufacturing. This paper addresses a new methodology to design reconfigurable micro/mesoscale CNC machine tools in the integrated product, process, and manufacturing system development context. This is followed by a description of the design of a reconfigurable two-axis first-generation test bed CNC micromachine tool that was developed to assess the feasibility of the new design method. The test bed utilizes a high-speed miniature spindle that is required to obtain appropriate cutting velocities for the efficient cutting of metals, use micro-actuators for the axis movements and open-architecture controllers, in order to guarantee the reconfigurability properties of the micromachine. Results indicate the new methodology enhances the design of reconfigurable micro/mesoscale CNC machine tools in the integrated product, process, and manufacturing system development context, following the prescriptive models of design.


2014 ◽  
Vol 682 ◽  
pp. 192-195 ◽  
Author(s):  
U.S. Putilova ◽  
Yu.I. Nekrasov ◽  
A.A. Lasukov

To improve the treatment accuracy by on-line correction of the paths of the executive working parts (EWP) the authors study the processes of loading, deformation and arrangement deviation of the elements of the manufacturing systems (MS) under the changes of the cutting force components in the process of turning on machine-tools equipped with CNC systems of PCNC class. Estimation of the values of the technological components of the cutting force Px, Py, Pz is based on the phenomenon of arrangement deviation Δωi of the elements monitoring the servo drives of machine tools. To determine the compliance of the deviation magnitude Δwi with the technological components of the cutting force Px, Py a diagnostic subsystem was developed, involving the loading devices and dynamometric equipment. The diagnostic system is controlled through PCNC with the application of a specially developed hardware-software system. The data on changes in the values Px, Py and the respective changes in the attitude misalignment parameters in servo drives at various EWP minute feeds in CNC machine tools were determined by prior diagnosis of load characteristics servo drives, registered in the PCNC. So, the data of cutting force components Px, Py compliance with arrangement error ratios ΔωXп, ΔωZп. were established.


2009 ◽  
Vol 16-19 ◽  
pp. 155-159
Author(s):  
Zhong Qi Sheng ◽  
Hua Long Xie ◽  
Zhi Wei Xu ◽  
Peng Li

As an important part of CNC machine tools and machining center, automatic tool changer is the basis to realize continuous processing of multiple machining operations. The design system development of tool magazine is an engineering of complex system. Based on the secondary development technology of UG, this paper developed the design and management system of tool magazine and realized the standardization and the process of design procedure. After introducing the basic idea of design system development, this paper presented function modules and design workflow of tool magazine respectively. The management system for tool magazine was given next. UG-based development of tool magazine for CNC machine tools can meet the design need and improve the design quality effectively.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2913
Author(s):  
Rafał Gołębski ◽  
Piotr Boral

Classic methods of machining cylindrical gears, such as hobbing or circumferential chiseling, require the use of expensive special machine tools and dedicated tools, which makes production unprofitable, especially in small and medium series. Today, special attention is paid to the technology of making gears using universal CNC (computer numerical control) machine tools with standard cheap tools. On the basis of the presented mathematical model, a software was developed to generate a code that controls a machine tool for machining cylindrical gears with straight and modified tooth line using the multipass method. Made of steel 16MnCr5, gear wheels with a straight tooth line and with a longitudinally modified convex-convex tooth line were machined on a five-axis CNC milling machine DMG MORI CMX50U, using solid carbide milling cutters (cylindrical and ball end) for processing. The manufactured gears were inspected on a ZEISS coordinate measuring machine, using the software Gear Pro Involute. The conformity of the outline, the tooth line, and the gear pitch were assessed. The side surfaces of the teeth after machining according to the planned strategy were also assessed; the tests were carried out using the optical microscope Alicona Infinite Focus G5 and the contact profilographometer Taylor Hobson, Talysurf 120. The presented method is able to provide a very good quality of machined gears in relation to competing methods. The great advantage of this method is the use of a tool that is not geometrically related to the shape of the machined gear profile, which allows the production of cylindrical gears with a tooth and profile line other than the standard.


Sign in / Sign up

Export Citation Format

Share Document