Fault Detection of Sensor Data in Semiconductor Processing Using Neural Network with Dynamic Time Wrapping Loss

Author(s):  
Wang Yong ◽  
Lu Jingjing ◽  
Chen Xu ◽  
Wei Zhengying
2021 ◽  
Vol 38 (4) ◽  
pp. 1161-1169
Author(s):  
Veeramosu Priyanka Brahmaiah ◽  
Yarlagadda Padma Sai ◽  
Mahendra N. Giri Prasad

Epileptic seizure is one which affects the normal brain activities of human being and considered to be a risky disease. The eye ball movement signals pattern plays a significant role in determining the epileptic seizure in precise manner. In addition to it, EOG signals has its influence in detecting epileptic seizure through assessment of eye ball movement signals precisely. Detecting Epilepsy using genetical based Convolutional Neural Network plays a major role in the previous research works. Conversely, the existence of background noise on eye ball signals may impact on the outcome failure. Noise aware Epileptic Seizure Detection using Thirteen Layer Convolution Neural Network (NESD-TLCNN) is adopted in this research to mitigate this issue and thereby ensuring the prediction rate more precisely. Furthermore, Hybrid Dynamic Time Wrapping based Hidden Markov Model (HDWT-HMM) is greatly utilized for primary background noise detection and removal by estimating the noise depending on distance metric. Once after the completion of noise estimation, perfect detection of epileptic seizure is accomplished using feature extraction. The peculiar features involved are saccade, fixation and blink features. Subsequently, Particle swarm optimization (PSO) technique is also involved in this research for optimal feature selection. Thirteen Layer Convolution Neural Network (TLCNN) is applied at last for learning and differentiation of epileptic seizure from the normal eyes. This research is being carried out in MATLAB platform which also reveals that the anticipated methodology produces improved outcomes when contrasted with the existing research work.


2020 ◽  
Vol 10 (17) ◽  
pp. 6050
Author(s):  
Seong Kyung Kwon ◽  
Hojin Jung ◽  
Kyoung-Dae Kim

Despite recent advances in technologies for intelligent transportation systems, the safety of intersection traffic is still threatened by traffic signal violation, called the Red Light Runner (RLR). The conventional approach to ensure the intersection safety under the threat of an RLR is to extend the length of the all-red signal when an RLR is detected. Therefore, the selection of all-red signal length is an important factor for intersection safety as well as traffic efficiency. In this paper, for better safety and efficiency of intersection traffic, we propose a framework for dynamic all-red signal control that adjusts the length of all-red signal time according to the driving characteristics of the detected RLR. In this work, we define RLRs into four different classes based on the clustering results using the Dynamic Time Wrapping (DTW) and the Hierarchical Clustering Analysis (HCA). The proposed system uses a Multi-Channel Deep Convolutional Neural Network (MC-DCNN) for online detection of RLR and also classification of RLR class. For dynamic all-red signal control, the proposed system uses a multi-level regression model to estimate the necessary all-red signal extension time more accurately and hence improves the overall intersection traffic safety as well as efficiency.


2020 ◽  
Author(s):  
Nithya Subramanian ◽  
Hongmei He ◽  
Ian Jennions

2020 ◽  
Vol 14 (2) ◽  
pp. 205-220
Author(s):  
Yuxiu Jiang ◽  
Xiaohuan Zhao

Background: The working state of electronic accelerator pedal directly affects the safety of vehicles and drivers. Effective fault detection and judgment for the working state of the accelerator pedal can prevent accidents. Methods: Aiming at different working conditions of electronic accelerator pedal, this paper used PNN and BP diagnosis model to detect the state of electronic accelerator pedal according to the principle and characteristics of PNN and BP neural network. The fault diagnosis test experiment of electronic accelerator pedal was carried out to get the data acquisition. Results: After the patents for electronic accelerator pedals are queried and used, the first measured voltage, the upper limit of first voltage, the first voltage lower limit, the second measured voltage, the upper limit of second voltage and the second voltage lower limit are tested to build up the data samples. Then the PNN and BP fault diagnosis models of electronic accelerator pedal are established. Six fault samples are defined through the design of electronic accelerator pedal fault classifier and the fault diagnosis processes are executed to test. Conclusion: The fault diagnosis results were analyzed and the comparisons between the PNN and the BP research results show that BP neural network is an effective method for fault detection of electronic throttle pedal, which is obviously superior to PNN neural network based on the experiment data.


1997 ◽  
Vol 30 (11) ◽  
pp. 561-566 ◽  
Author(s):  
Koji Morinaga ◽  
Michael E. Sugars ◽  
Koji Muteki ◽  
Haruo Takada

Sign in / Sign up

Export Citation Format

Share Document