Study of hybrid power sources for electrical vehicles

Author(s):  
Florin Andrei Rusu ◽  
Gheorghe Livint
2013 ◽  
Vol 448-453 ◽  
pp. 2326-2334 ◽  
Author(s):  
Yan Ping Li ◽  
Li Liu ◽  
Xiao Hui Zhang ◽  
Shang Tao Shi ◽  
Chang Wei Guo

As the aviation has realized the seriousness of pollution and emission issues, people have taken efforts to use renewable energy on planes or UAVs. This paper focused on the applications of solar and hydrogen energy to UAVs. A hybrid power system, consisting of solar cells, fuel cells and lithium batteries, was discussed. To achieve the hybridization of power sources, a prototype of a power management unit (PMU) was fabricated. After the installation of a test system for synthesizing power sources, PMU and load, a series of ground tests were executed to verify the mathematical model of lithium battery and the reliability of the hardware. Ground data confirmed the feasibility of hybrid power system.


Fuel Cells ◽  
2018 ◽  
Vol 18 (6) ◽  
pp. 809-823 ◽  
Author(s):  
N. Bizon ◽  
G. Iana ◽  
E. Kurt ◽  
P. Thounthong ◽  
M. Oproescu ◽  
...  

2019 ◽  
Vol 7 (7) ◽  
pp. 230 ◽  
Author(s):  
Gilltae Roh ◽  
Hansung Kim ◽  
Hyeonmin Jeon ◽  
Kyoungkuk Yoon

The need for technological development to reduce the impact of air pollution caused by ships has been strongly emphasized by many authorities, including the International Maritime Organization (IMO). This has encouraged research to develop an electric propulsion system using hydrogen fuel with the aim of reducing emissions from ships. This paper describes the test bed we constructed to compare our electric propulsion system with existing power sources. Our system uses hybrid power and a diesel engine generator with a combined capacity of 180 kW. To utilize scale-down methodology, the linear interpolation method is applied. The proposed hybrid power source consists of a molten carbonate fuel cell (MCFC), a battery, and a diesel generator, the capacities of which are 100 kW, 30 Kw, and 50 kW, respectively. The experiments we conducted on the test bed were based on the outcome of an analysis of the electrical power consumed in each operating mode considering different types of merchant ships employed in practice. The output, fuel consumption, and CO2 emission reduction rates of the hybrid and conventional power sources were compared based on the load scenarios created for each type of ship. The CO2 emissions of the hybrid system was compared with the case of the diesel generator alone operation for each load scenario, with an average of 70%~74%. This analysis confirmed the effectiveness of using a ship with a fuel-cell-based hybrid power source.


Author(s):  
Adriano Ceschia ◽  
Toufik Azib ◽  
Olivier Bethoux ◽  
Francisco Alves

2019 ◽  
Vol 9 (14) ◽  
pp. 2787 ◽  
Author(s):  
Chunlian Wang ◽  
Yongchao Yu ◽  
Jiajia Niu ◽  
Yaxuan Liu ◽  
Denzel Bridges ◽  
...  

With the ever-increasing demand for power sources of high energy density and stability for emergent electrical vehicles and portable electronic devices, rechargeable batteries (such as lithium-ion batteries, fuel batteries, and metal–air batteries) have attracted extensive interests. Among the emerging battery technologies, metal–air batteries (MABs) are under intense research and development focus due to their high theoretical energy density and high level of safety. Although significant progress has been achieved in improving battery performance in the past decade, there are still numerous technical challenges to overcome for commercialization. Herein, this mini-review summarizes major issues vital to MABs, including progress on packaging and crucial manufacturing technologies for cathode, anode, and electrolyte. Future trends and prospects of advanced MABs by additive manufacturing and nanoengineering are also discussed.


2014 ◽  
Vol 10 (4) ◽  
pp. 1992-2002 ◽  
Author(s):  
Amin ◽  
Riyanto Trilaksono Bambang ◽  
Arief Syaichu Rohman ◽  
Cees Jan Dronkers ◽  
Romeo Ortega ◽  
...  

2020 ◽  
Vol 12 (11) ◽  
pp. 168781402096692
Author(s):  
Po-Tuan Chen ◽  
Cheng-Jung Yang ◽  
K David Huang

A fuzzy control strategy is developed in this study to manage the parallel hybrid power system of internal combustion engine (ICE) and electric motor (EM) for hybrid vehicles. The rules established for the fuzzy logic are based on the conditions of vehicle pedal position, vehicle velocity, and the state of charge to control the throttle position of the ICE and the switch position of EM in low-, mid-, and high-power cruising. The optimization of the control strategy can make vehicles achieving ECE 40 driving pattern. In addition, the ICE can work in an optimal operation range, thus reducing carbon emission. The EM may provide power according to the demand, such that the torque output of the output shaft of the power split device is twice of the input of the two power sources separately.


Sign in / Sign up

Export Citation Format

Share Document