UAV as a service: Enabling on-demand access and on-the-fly re-tasking of multi-tenant UAVs using cloud services

Author(s):  
Justin Yapp ◽  
Remzi Seker ◽  
Radu Babiceanu
Keyword(s):  
2021 ◽  
Author(s):  
Lucas Bragança ◽  
Jeronimo Penha ◽  
Michael Canesche ◽  
Dener Ribeiro ◽  
José Augusto M. Nacif ◽  
...  

FPGAs are suitable to speed up gene regulatory network (GRN) algorithms with high throughput and energy efficiency. In addition, virtualizing FPGA using hardware generators and cloud resources increases the computing ability to achieve on-demand accelerations across multiple users. Recently, Amazon AWS provides high-performance Cloud's FPGAs. This work proposes an open source accelerator generator for Boolean gene regulatory networks. The generator automatically creates all hardware and software pieces from a high-level GRN description. We evaluate the accelerator performance and cost for CPU, GPU, and Cloud FPGA implementations by considering six GRN models proposed in the literature. As a result, the FPGA accelerator is at least 12x faster than the best GPU accelerator. Furthermore, the FPGA reaches the best performance per dollar in cloud services, at least 5x better than the best GPU accelerator.


2021 ◽  
Vol 27 (4) ◽  
pp. 387-412
Author(s):  
Marcelo Aires Vieira ◽  
Elivaldo Lozer Fracalossi Ribeiro ◽  
Daniela Barreiro Claro ◽  
Babacar Mane

With the growth of cloud services, many companies have begun to persist and make their data available through services such as Data as a Service (DaaS) and Database as a Service (DBaaS). The DaaS model provides on-demand data through an Application Programming Inter- face (API), while DBaaS model provides on-demand database management systems. Different data sources require efforts to integrate data from different models. These model types include unstructured, semi-structured, and structured data. Heterogeneity from DaaS and DBaaS makes it challenging to integrate data from different services. In response to this problem, we developed the Data Join (DJ) method to integrate heterogeneous DaaS and DBaaS sources. DJ was described through canonical models and incorporated into a middleware as a proof-of-concept. A test case and three experiments were performed to validate our DJ method: the first experiment tackles data from DaaS and DBaaS in isolation; the second experiment associates data from different DaaS and DBaaS through one join clause; and the third experiment integrates data from three sources (one DaaS and two DBaaS) based on different data type (relational, NoSQL, and NewSQL) through two join clauses. Our experiments evaluated the viability, functionality, integration, and performance of the DJ method. Results demonstrate that DJ method outperforms most of the related work on selecting and integrating data in a cloud environment.


Bioanalysis ◽  
2021 ◽  
Author(s):  
Scott Davis ◽  
Joel Usansky ◽  
Shibani Mitra-Kaushik ◽  
John Kellie ◽  
Kimberly Honrine ◽  
...  

Challenges for data storage during drug development have become increasingly complex as the pharmaceutical industry expands in an environment that requires on-demand availability of data and resources for users across the globe. While the efficiency and relative low cost of cloud services have become increasingly attractive, hesitancy toward the use of cloud services has decreased and there has been a significant shift toward real-world implementation. Within GxP laboratories, the considerations for cloud storage of data include data integrity and security, as well as access control and usage for users around the globe. In this review, challenges and considerations when using cloud storage options for the storage of laboratory-based GxP data are discussed and best practices are defined.


Author(s):  
Saravanan K ◽  
P. Srinivasan

Cloud IoT has evolved from the convergence of Cloud computing with Internet of Things (IoT). The networked devices in the IoT world grow exponentially in the distributed computing paradigm and thus require the power of the Cloud to access and share computing and storage for these devices. Cloud offers scalable on-demand services to the IoT devices for effective communication and knowledge sharing. It alleviates the computational load of IoT, which makes the devices smarter. This chapter explores the different IoT services offered by the Cloud as well as application domains that are benefited by the Cloud IoT. The challenges on offloading the IoT computation into the Cloud are also discussed.


Author(s):  
Christoph Reich ◽  
Sandra Hübner ◽  
Hendrik Kuijs

Cloud computing is used to provide users with computer resources on-demand any time over the Internet. At the Hochschule Furtwangen University (HFU) students, lecturers, and researchers can leverage cloud computing to enhance their e-learning experience. This chapter presents how cloud computing provides on-demand virtual desktops for problem solving, on-demand virtual labs for special courses, and on-demand collaboration platforms to support research groups. The focus is how cloud services can be used, how they can be integrated into the existing HFU-IT infrastructure, and how new didactic models could look.


GigaScience ◽  
2020 ◽  
Vol 9 (4) ◽  
Author(s):  
Marco Antonio Tangaro ◽  
Giacinto Donvito ◽  
Marica Antonacci ◽  
Matteo Chiara ◽  
Pietro Mandreoli ◽  
...  

Abstract Background While the popular workflow manager Galaxy is currently made available through several publicly accessible servers, there are scenarios where users can be better served by full administrative control over a private Galaxy instance, including, but not limited to, concerns about data privacy, customisation needs, prioritisation of particular job types, tools development, and training activities. In such cases, a cloud-based Galaxy virtual instance represents an alternative that equips the user with complete control over the Galaxy instance itself without the burden of the hardware and software infrastructure involved in running and maintaining a Galaxy server. Results We present Laniakea, a complete software solution to set up a “Galaxy on-demand” platform as a service. Building on the INDIGO-DataCloud software stack, Laniakea can be deployed over common cloud architectures usually supported both by public and private e-infrastructures. The user interacts with a Laniakea-based service through a simple front-end that allows a general setup of a Galaxy instance, and then Laniakea takes care of the automatic deployment of the virtual hardware and the software components. At the end of the process, the user gains access with full administrative privileges to a private, production-grade, fully customisable, Galaxy virtual instance and to the underlying virtual machine (VM). Laniakea features deployment of single-server or cluster-backed Galaxy instances, sharing of reference data across multiple instances, data volume encryption, and support for VM image-based, Docker-based, and Ansible recipe-based Galaxy deployments. A Laniakea-based Galaxy on-demand service, named Laniakea@ReCaS, is currently hosted at the ELIXIR-IT ReCaS cloud facility. Conclusions Laniakea offers to scientific e-infrastructures a complete and easy-to-use software solution to provide a Galaxy on-demand service to their users. Laniakea-based cloud services will help in making Galaxy more accessible to a broader user base by removing most of the burdens involved in deploying and running a Galaxy service. In turn, this will facilitate the adoption of Galaxy in scenarios where classic public instances do not represent an optimal solution. Finally, the implementation of Laniakea can be easily adapted and expanded to support different services and platforms beyond Galaxy.


2019 ◽  
Vol 11 (5) ◽  
pp. 116 ◽  
Author(s):  
Tri Hoang Vo ◽  
Woldemar Fuhrmann ◽  
Klaus-Peter Fischer-Hellmann ◽  
Steven Furnell

In recent years, enterprise applications have begun to migrate from a local hosting to a cloud provider and may have established a business-to-business relationship with each other manually. Adaptation of existing applications requires substantial implementation changes in individual architectural components. On the other hand, users may store their Personal Identifiable Information (PII) in the cloud environment so that cloud services may access and use it on demand. Even if cloud services specify their privacy policies, we cannot guarantee that they follow their policies and will not (accidentally) transfer PII to another party. In this paper, we present Identity-as-a-Service (IDaaS) as a trusted Identity and Access Management with two requirements: Firstly, IDaaS adapts trust between cloud services on demand. We move the trust relationship and identity propagation out of the application implementation and model them as a security topology. When the business comes up with a new e-commerce scenario, IDaaS uses the security topology to adapt a platform-specific security infrastructure for the given business scenario at runtime. Secondly, we protect the confidentiality of PII in federated security domains. We propose our Purpose-based Encryption to protect the disclosure of PII from intermediary entities in a business transaction and from untrusted hosts. Our solution is compliant with the General Data Protection Regulation and involves the least user interaction to prevent identity theft via the human link. The implementation can be easily adapted to existing Identity Management systems, and the performance is fast.


2018 ◽  
Vol 29 (3) ◽  
pp. 556-571 ◽  
Author(s):  
Xiangbo Li ◽  
Mohsen Amini Salehi ◽  
Magdy Bayoumi ◽  
Nian-Feng Tzeng ◽  
Rajkumar Buyya

2020 ◽  
pp. 1750-1769
Author(s):  
Alexandru Aurel Costan ◽  
Bogdan Iancu ◽  
Petru Cosmin Rasa ◽  
Alexandru Radu ◽  
Adrian Peculea ◽  
...  

Cloud computing is considered the next step in the evolution of technological applications, services and products development, in the Future Internet and Internet of Things context. The permanent connection of users to the Internet has become widespread, so almost all available resources (data, software) can be placed on the Internet, shared between users - sometimes completely independently of others, and brought from the Internet to the user's computer on demand. The chapter highlights the benefits of using hybrid technology with a focus towards entrepreneurs and business innovators. Intercloud systems are built of heterogeneous services, offered by different providers of cloud computing. To emphasize the business opportunities offered by innovative Intercloud approaches, an architecture for the interconnection of cloud services offered by multiple cloud providers, with applications to e-health, is presented. The main concepts and business benefits of using Intercloud systems and an architecture for interconnecting cloud services from multiple cloud providers is described.


2012 ◽  
pp. 1553-1575
Author(s):  
Luis M. Vaquero ◽  
Luis Rodero-Merino ◽  
Juan Cáceres ◽  
Clovis Chapman ◽  
Maik Lindner ◽  
...  

Cloud computing has emerged as a paradigm to provide every networked resource as a service. The Cloud has also introduced a new way to control cloud services (mainly due to the illusion of infinite resources and its on-demand and pay-per-use nature). Here, we present this lifecycle and highlight recent research initiatives that serve as a support for appropriately engineering Cloud systems during the different stages of its lifecycle.


Sign in / Sign up

Export Citation Format

Share Document