System-level reliability evaluation through cache-aware software-based fault injection

Author(s):  
Firas Kaddachi ◽  
Maha Kooli ◽  
Giorgio Di Natale ◽  
Alberto Bosio ◽  
Mojtaba Ebrahimi ◽  
...  
2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Zhen Hu ◽  
Zissimos P. Mourelatos

Testing of components at higher-than-nominal stress level provides an effective way of reducing the required testing effort for system reliability assessment. Due to various reasons, not all components are directly testable in practice. The missing information of untestable components poses significant challenges to the accurate evaluation of system reliability. This paper proposes a sequential accelerated life testing (SALT) design framework for system reliability assessment of systems with untestable components. In the proposed framework, system-level tests are employed in conjunction with component-level tests to effectively reduce the uncertainty in the system reliability evaluation. To minimize the number of system-level tests, which are much more expensive than the component-level tests, the accelerated life testing (ALT) design is performed sequentially. In each design cycle, testing resources are allocated to component-level or system-level tests according to the uncertainty analysis from system reliability evaluation. The component-level or system-level testing information obtained from the optimized testing plans is then aggregated to obtain the overall system reliability estimate using Bayesian methods. The aggregation of component-level and system-level testing information allows for an effective uncertainty reduction in the system reliability evaluation. Results of two numerical examples demonstrate the effectiveness of the proposed method.


2021 ◽  
Vol 1 ◽  
pp. 115
Author(s):  
Alper Kanak ◽  
Salih Ergun ◽  
Ahmet Yazıcı ◽  
Metin Ozkan ◽  
Gürol Çokünlü ◽  
...  

Verification and validation (V&V) of systems, and system of systems, in an industrial context has never been as important as today. The recent developments in automated cyber-physical systems, digital twin environments, and Industry 4.0 applications require effective and comprehensive V&V mechanisms. Verification and Validation of Automated Systems' Safety and Security (VALU3S), a Horizon 2020 Electronic Components and Systems for European Leadership Joint Undertaking (ECSEL-JU) project started in May 2020, aims to create and evaluate a multi-domain V&V framework that facilitates evaluation of automated systems from component level to system level, with the aim of reducing the time and effort needed to evaluate these systems. VALU3S focuses on V&V for the requirements of safety, cybersecurity, and privacy (SCP). This paper mainly focuses on the elaboration of one of the 13 use cases of VALU3S to identify the SCP issues in an automated robot inspection cell that is being actively used for the quality control assessment of automotive body-in-white. The joint study here embarks on a collaborative approach that puts the V&V methods and workflows for the robotic arms safety trajectory planning and execution, fault injection techniques, cyber-physical security vulnerability assessment, anomaly detection, and SCP countermeasures required for remote control and inspection. The paper also presents cross-links with ECSEL-JU goals and the current advancements in the market and scientific and technological state-of-play.


2021 ◽  
Author(s):  
Alexander Aponte-Moreno ◽  
Felipe Restrepo-Calle ◽  
Cesar Pedraza

Sign in / Sign up

Export Citation Format

Share Document