Generation and verification of tests for analogue circuits subject to process parameter deviations

Author(s):  
S.J. Spinks ◽  
C.D. Chalk ◽  
I.M. Bell ◽  
M. Zwolinski
2010 ◽  
Vol 3 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Roberto Rizzo ◽  
Giovanni Romagnoli ◽  
Giuseppe Vignali

2020 ◽  
Vol 62 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Kandhasamy Suganeswaran ◽  
Rathinasamy Parameshwaran ◽  
Thangamuthu Mohanraj ◽  
Balasubramaniyam Meenakshipriya

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sira Mogas-Díez ◽  
Eva Gonzalez-Flo ◽  
Javier Macía

AbstractMuch effort has been expended on building cellular computational devices for different applications. Despite the significant advances, there are still several addressable restraints to achieve the necessary technological transference. These improvements will ease the development of end-user applications working out of the lab. In this study, we propose a methodology for the construction of printable cellular devices, digital or analogue, for different purposes. These printable devices are designed to work in a 2D surface, in which the circuit information is encoded in the concentration of a biological signal, the so-called carrying signal. This signal diffuses through the 2D surface and thereby interacts with different device components. These components are distributed in a specific spatial arrangement and perform the computation by modulating the level of the carrying signal in response to external inputs, determining the final output. For experimental validation, 2D cellular circuits are printed on a paper surface by using a set of cellular inks. As a proof-of-principle, we have printed and analysed both digital and analogue circuits using the same set of cellular inks but with different spatial topologies. The proposed methodology can open the door to a feasible and reliable industrial production of cellular circuits for multiple applications.


2014 ◽  
Vol 494-495 ◽  
pp. 461-465 ◽  
Author(s):  
Bao Shou Sun ◽  
Zhe Hong ◽  
Long Qing Xu ◽  
Xue Dao Shu ◽  
Bo Qin Gu ◽  
...  

This paper simulates the process of the high-neck flange closed rolling on DEFORM-3D and optimizes the rolling process parameter by analyzing the results based on the orthogonal experimental design. For the high-neck flange, the results show that the effects on ellipticity are in the order of the mandrel feed speed, the main roll rotational speed and initial blank temperature. The former two factors show the significance while the initial blank temperature does not show that.


Sign in / Sign up

Export Citation Format

Share Document