Optimal operation of microgrid composed of small hydropower and photovoltaic generation with energy storage based on multiple scenarios technique

Author(s):  
Changchun Cai ◽  
Shucheng Cheng ◽  
Bing Jiang ◽  
Weili Dai ◽  
Min Wu ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1261
Author(s):  
Dina Emara ◽  
Mohamed Ezzat ◽  
Almoataz Y. Abdelaziz ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
...  

Recently, the penetration of energy storage systems and photovoltaics has been significantly expanded worldwide. In this regard, this paper presents the enhanced operation and control of DC microgrid systems, which are based on photovoltaic modules, battery storage systems, and DC load. DC–DC and DC–AC converters are coordinated and controlled to achieve DC voltage stability in the microgrid. To achieve such an ambitious target, the system is widely operated in two different modes: stand-alone and grid-connected modes. The novel control strategy enables maximum power generation from the photovoltaic system across different techniques for operating the microgrid. Six different cases are simulated and analyzed using the MATLAB/Simulink platform while varying irradiance levels and consequently varying photovoltaic generation. The proposed system achieves voltage and power stability at different load demands. It is illustrated that the grid-tied mode of operation regulated by voltage source converter control offers more stability than the islanded mode. In general, the proposed battery converter control introduces a stable operation and regulated DC voltage but with few voltage spikes. The merit of the integrated DC microgrid with batteries is to attain further flexibility and reliability through balancing power demand and generation. The simulation results also show the system can operate properly in normal or abnormal cases, thanks to the proposed control strategy, which can regulate the voltage stability of the DC bus in the microgrid with energy storage systems and photovoltaics.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1965
Author(s):  
Edoardo De Din ◽  
Fabian Bigalke ◽  
Marco Pau ◽  
Ferdinanda Ponci ◽  
Antonello Monti

The development of strategies for distribution network management is an essential element for increasing network performance and reducing the upgrade of physical assets. This paper analyzes a multi-timescale framework to control the voltage of distribution grids characterized by a high penetration of renewables. The multi-timescale solution is based on three levels that coordinate Distributed Generation (DG) and Energy Storage Systems (ESSs), but differs in terms of the timescales and objectives of the control levels. Realistic load and photovoltaic generation profiles were created for cloudy and clean sky conditions to evaluate the performance features of the multi-timescale framework. The proposed solution was also compared with different frameworks featuring two of the three levels, to highlight the contribution of the combination of the three levels in achieving the best performance.


2021 ◽  
Author(s):  
Chao Mao ◽  
Jianxun Shi ◽  
Bo Gao ◽  
Yanmin Zhao ◽  
Chongbiao Zhang ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Shaozhen Jin ◽  
Zhizhong Mao ◽  
Hongru Li ◽  
Wenhai Qi

In this paper, a novel dynamic programming technique is presented for optimal operation of a typical renewable microgrid including battery energy storage. The main idea is to use the scenarios analysis technique to proceed the uncertainties related to the available output power of wind and photovoltaic units and dynamic programming technique to obtain the optimal control strategy for a renewable microgrid system in a finite time period. First, to properly model the system, a mathematical model including power losses of the renewable microgrid is established, where the uncertainties due to the fluctuating generation from renewable energy sources are considered. Next, considering the dynamic power constraints of the battery, a new performance index function is established, where the Lagrange multipliers and interior point method will be presented for the equality and inequality operation constraints. Then, a feedback control scheme based on the dynamic programming is proposed to solve the model and obtain the optimal solution. Finally, simulation and comparison results are given to illustrate the performance of the presented method.


Sign in / Sign up

Export Citation Format

Share Document