High-level verification of multi-object segmentation

Author(s):  
Martin Lukac ◽  
Almas Zhurtanov ◽  
Aizhan Ospanova
2021 ◽  
Vol 5 (1) ◽  
pp. 21-42
Author(s):  
Leissi M.C. Leon ◽  
Krzysztof C. Ciesielski ◽  
Paulo A.V. Miranda

Abstract We propose a novel efficient seed-based method for the multi-object segmentation of images based on graphs, named Hierarchical Layered Oriented Image Foresting Transform (HLOIFT). It uses a tree of the relations between the image objects, with each node in the tree representing an object. Each tree node may contain different individual high-level priors of its corresponding object and defines a weighted digraph, named as layer. The layer graphs are then integrated into a hierarchical graph, considering the hierarchical relations of inclusion and exclusion. A single energy optimization is performed in the hierarchical layered weighted digraph leading to globally optimal results satisfying all the high-level priors. The experimental evaluations of HLOIFT, on medical, natural, and synthetic images, indicate promising results comparable to the related baseline methods that include structural information, but with lower computational complexity. Compared to the hierarchical segmentation by the min-cut/max-flow algorithm, our approach is less restrictive, leading to globally optimal results in more general scenarios, and has a better running time.


2003 ◽  
Vol 15 (9) ◽  
pp. 2091-2113 ◽  
Author(s):  
Michael H. Herzog ◽  
Udo A. Ernst ◽  
Axel Etzold ◽  
Christian W. Eurich

One of the fundamental and puzzling questions in vision research is how objects are segmented from their backgrounds and how object formation evolves in time. The recently discovered shine-through effect allows one to study object segmentation and object formation of a masked target depending on the spatiotemporal Gestalt of the masking stimulus (Herzog & Koch, 2001). In the shine-through effect, a vernier (two abutting lines) precedes a grating for a very short time. For small gratings, the vernier remains invisible while it regains visibility as a shine-through element for extended and homogeneous gratings. However, even subtle deviations from the homogeneity of the grating diminish or even abolish shine—through. At first glance, these results suggest that explanations of these effects have to rely on high-level Gestalt terminology such as homogeneity rather than on low-level properties such as luminance (Herzog, Fahle, & Koch, 2001). Here, we show that a simple neural network model of the Wilson-Cowan type qualitatively and quantitatively explains the basic effects in the shine-through paradigm, although the model does not contain any explicit, global Gestalt processing. Visibility of the target vernier corresponds to transient activation of neural populations resulting from the dynamics of local lateral interactions of excitatory and inhibitory layers of neural populations.


Author(s):  
Huiling Wang ◽  
Tinghuai Wang ◽  
Ke Chen ◽  
Joni-Kristian Kämäräinen

We address semantic video object segmentation via a novel cross-granularity hierarchical graphical model to integrate tracklet and object proposal reasoning with superpixel labeling. Tracklet characterizes varying spatial-temporal relations of video object which, however, quite often suffers from sporadic local outliers. In order to acquire high-quality tracklets, we propose a transductive inference model which is capable of calibrating short-range noisy object tracklets with respect to long-range dependencies and high-level context cues. In the center of this work lies a new paradigm of semantic video object segmentation beyond modeling appearance and motion of objects locally, where the semantic label is inferred by jointly exploiting multi-scale contextual information and spatial-temporal relations of video object. We evaluate our method on two popular semantic video object segmentation benchmarks and demonstrate that it advances the state-of-the-art by achieving superior accuracy performance than other leading methods.


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Author(s):  
J. S. Wall

The forte of the Scanning transmission Electron Microscope (STEM) is high resolution imaging with high contrast on thin specimens, as demonstrated by visualization of single heavy atoms. of equal importance for biology is the efficient utilization of all available signals, permitting low dose imaging of unstained single molecules such as DNA.Our work at Brookhaven has concentrated on: 1) design and construction of instruments optimized for a narrow range of biological applications and 2) use of such instruments in a very active user/collaborator program. Therefore our program is highly interactive with a strong emphasis on producing results which are interpretable with a high level of confidence.The major challenge we face at the moment is specimen preparation. The resolution of the STEM is better than 2.5 A, but measurements of resolution vs. dose level off at a resolution of 20 A at a dose of 10 el/A2 on a well-behaved biological specimen such as TMV (tobacco mosaic virus). To track down this problem we are examining all aspects of specimen preparation: purification of biological material, deposition on the thin film substrate, washing, fast freezing and freeze drying. As we attempt to improve our equipment/technique, we use image analysis of TMV internal controls included in all STEM samples as a monitor sensitive enough to detect even a few percent improvement. For delicate specimens, carbon films can be very harsh-leading to disruption of the sample. Therefore we are developing conducting polymer films as alternative substrates, as described elsewhere in these Proceedings. For specimen preparation studies, we have identified (from our user/collaborator program ) a variety of “canary” specimens, each uniquely sensitive to one particular aspect of sample preparation, so we can attempt to separate the variables involved.


2020 ◽  
Vol 29 (4) ◽  
pp. 738-761
Author(s):  
Tess K. Koerner ◽  
Melissa A. Papesh ◽  
Frederick J. Gallun

Purpose A questionnaire survey was conducted to collect information from clinical audiologists about rehabilitation options for adult patients who report significant auditory difficulties despite having normal or near-normal hearing sensitivity. This work aimed to provide more information about what audiologists are currently doing in the clinic to manage auditory difficulties in this patient population and their views on the efficacy of recommended rehabilitation methods. Method A questionnaire survey containing multiple-choice and open-ended questions was developed and disseminated online. Invitations to participate were delivered via e-mail listservs and through business cards provided at annual audiology conferences. All responses were anonymous at the time of data collection. Results Responses were collected from 209 participants. The majority of participants reported seeing at least one normal-hearing patient per month who reported significant communication difficulties. However, few respondents indicated that their location had specific protocols for the treatment of these patients. Counseling was reported as the most frequent rehabilitation method, but results revealed that audiologists across various work settings are also successfully starting to fit patients with mild-gain hearing aids. Responses indicated that patient compliance with computer-based auditory training methods was regarded as low, with patients generally preferring device-based rehabilitation options. Conclusions Results from this questionnaire survey strongly suggest that audiologists frequently see normal-hearing patients who report auditory difficulties, but that few clinicians are equipped with established protocols for diagnosis and management. While many feel that mild-gain hearing aids provide considerable benefit for these patients, very little research has been conducted to date to support the use of hearing aids or other rehabilitation options for this unique patient population. This study reveals the critical need for additional research to establish evidence-based practice guidelines that will empower clinicians to provide a high level of clinical care and effective rehabilitation strategies to these patients.


2006 ◽  
Vol 175 (4S) ◽  
pp. 260-260
Author(s):  
Rile Li ◽  
Hong Dai ◽  
Thomas M. Wheeler ◽  
Anna Frolov ◽  
Gustavo Ayala

Sign in / Sign up

Export Citation Format

Share Document