Closed loop D-Q control of high-voltage high-power three-phase dual active bridge converter in presence of real transformer parasitic parameters

Author(s):  
Awneesh K. Tripathi ◽  
Krishna Mainali ◽  
Dhaval Patel ◽  
Subhashish Bhattacharya ◽  
Kamalesh Hatua
2021 ◽  
Vol 17 (1) ◽  
pp. 1-13
Author(s):  
Adala Abdali ◽  
Ali Abdulabbas ◽  
Habeeb Nekad

The multilevel inverter is attracting the specialist in medium and high voltage applications, among its types, the cascade H bridge Multi-Level Inverter (MLI), commonly used for high power and high voltage applications. The main advantage of the conventional cascade (MLI) is generated a large number of output voltage levels but it demands a large number of components that produce complexity in the control circuit, and high cost. Along these lines, this paper presents a brief about the non-conventional cascade multilevel topologies that can produce a high number of output voltage levels with the least components. The non-conventional cascade (MLI) in this paper was built to reduce the number of switches, simplify the circuit configuration, uncomplicated control, and minimize the system cost. Besides, it reduces THD and increases efficiency. Two topologies of non-conventional cascade MLI three phase, the Nine level and Seventeen level are presented. The PWM technique is used to control the switches. The simulation results show a better performance for both topologies. THD, the power loss and the efficiency of the two topologies are calculated and drawn to the different values of the Modulation index (ma).


2011 ◽  
Vol 347-353 ◽  
pp. 843-847
Author(s):  
Ting Jiang ◽  
Jian Feng Jiang ◽  
Xi Jun Yang

Charge storage is an important research topic in smart grid and distributed generation system, pumped storage as one of the most popular large-scale charge storage methods has attracted increasing attention. However, the motor generator of the pumped charge station has high input voltage and heavy load, so in order to get grid connected safely, being soft started by a high voltage converter is necessary. In the view of the existing high voltage high power converters, only the voltage source inverter Multi-stage Series-connection high voltage frequency converters are suitable for this application, and this paper gives analysis of such converters. Based on Carrier Wave Phase-Shifted modulation, this paper proposes a multi-stage Series-connection high voltage frequency converter with balanced output power of the step-down transformer’s secondary windings, in which a winding burdens three symmetry three-phase to single-phase MC outputs, and the same phase outputs of the MC are cascaded at the secondary side of the transformers, letting out one phase of high-voltage AC output. The circuit is consisted of a step-down industry frequency transformer at the network side, three-phase to single-phase MC arrays, a step-up high frequency transformer at the load side and filter components. The simulation result based on MATLAB/SIMULINK shows that the proposed multi-stage Series-connection high voltage frequency converter is feasible and low-cost.


2014 ◽  
Vol 29 (8) ◽  
pp. 4067-4077 ◽  
Author(s):  
Stefan P. Engel ◽  
Nils Soltau ◽  
Hanno Stagge ◽  
Rik W. De Doncker

Sign in / Sign up

Export Citation Format

Share Document