Power system frequency control with dead band by using kinetic energy of variable speed wind power generators

Author(s):  
Yuta Yoshida ◽  
Kenta Koiwa ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
Junji Tamura
2012 ◽  
Vol 608-609 ◽  
pp. 579-583
Author(s):  
Yao Fei Hou ◽  
Guang Kai Li ◽  
Jian Ding ◽  
Jie Shen ◽  
Song Teng

The variable-speed doubly-fed wind turbines (DFIG) were able to participate in frequency regulation by adding an additional frequency control. The influences exerted by the additional frequency control of DFIG units and conventional units governors on system frequency emergency control measures were analyzed. When the power shortage is small, it is recommended to consider the DFIG units to participate in frequency regulation, While a large power shortage it is not recommended.


Author(s):  
Issarachai Ngamroo

In an isolated wind-diesel hybrid power system, the variable power consumptions as well as the intermittent wind power may cause a large fluctuation of system frequency. If the system frequency can not be controlled and kept in the acceptable range, the system may lose stability. To reduce system frequency fluctuation, a superconducting magnetic energy storage (SMES) which is able to supply and absorb active power quickly, can be applied. In addition, variation of system parameters, unpredictable power demands and fluctuating wind power etc., cause various uncertainties in the system. A SMES controller which is designed without considering such uncertainties may lose control effect. To enhance the robustness of SMES controller, this paper focuses on a new robust control design of SMES for frequency control in a wind-diesel system. The coprime factorization is used to represent the unstructured uncertainties in a system modeling. The structure of a SMES controller is the practical first-order lead-lag compensator. To tune the controller parameters, the optimization problem is formulated based on loop shaping technique. The genetic algorithm is applied to solve the problem and achieve the control parameters. Simulation results confirm the high robustness of the proposed SMES controller with small power capacity against various disturbances and system uncertainties in comparison with SMES in the previous research.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 187
Author(s):  
Jinhong Ahn ◽  
Eel-Hwan Kim

In this paper, we propose a microgrid (MG) implementation method through Medium-Voltage Direct Current (MVDC) connection between Gapado Island and Marado Island in Korea. MVDC is a facility that can be efficiently applied between small power generation complexes. The structure of power generation facilities is mainly supplied by diesel generators, while solar and wind power generators supply additional power. An Energy Storage System (ESS) is also used to reduce the output fluctuations of wind and solar power generation. Since power systems in such areas are low-voltage and low-power distribution systems, problems can arise in terms of power management due to power generators with variable output characteristics such as solar power and wind power generators. In addition, when a major power source such as a diesel generator is dropped, the power system collapses. However, these problems can be solved by interchanging the power between the micro-grids through the connection of MVDCs. With the MVDC connected, we verify the impact of the power system on Marado Island and Gapado Island due to the input and opening of solar, wind and diesel generators. The proposed configuration uses the PSCAD/EMTDC simulation program.


Sign in / Sign up

Export Citation Format

Share Document