The Parasitic Capacitance of Magnetic Components with Ferrite Cores Due to Time-Varying Electromagnetic (EM) Field

Author(s):  
Hui Zhao ◽  
Yiming Li ◽  
Qiang Lin ◽  
Shuo Wang
2017 ◽  
Vol 1 (3) ◽  
Author(s):  
Jiang Liyuan

Transformer-inductor simulation model not only reflects the characteristics of magnetic path and circuit, but also brings in magnetic components that reflected the parasitic capacitance. There are further research, strict derivation and magnetic circuit equivalent for the model in this article. Under the condition of considering hysteresis, saturation effect we can conclude a new modeling and its equivalent, which can make the magnetic curve and characteristic get better fitting. It shows that the transformer-inductance simulation model is easy to spread and use.


2021 ◽  
Author(s):  
Kseniia Antashchuk ◽  
Alexey Atakov ◽  
Anton Kocherov

<p>The results of different scale EM investigations at the gold prospective area in the Altay republic are considered. The study was aimed at the first one to detect the prospective area of gold-deposits location and also to test the UAV based EM system. At the first stage the AMT surveys along 20 km length line were implemented. Their results and geological information allowed us to delineated the small area with size about 2x4 km for detailed survey. The ERT, IP, magnetometry and ground and UAV based EM surveys were implemented. EM surveys were carried out using VLF field and CS. The horizontal electric dipole of 1.6 km in length was used as a source of EM field and it produced the signals of rectangular wave form at 500 Hz. Three magnetic components of EM field (H<sub>x</sub>, H<sub>y</sub>, H<sub>z</sub>) were measured with sampling frequency 312 kHz. Data were obtained in the range 500 Hz – 100 kHz. There are the few VLF stations in the studied area and the general information were obtained from the measurements using CS technique. The comparison of ground-based EM soundings results with ERT data shows good correlation. In addition, the UAV based measurements possibility were shown and their results allow to map the general features of the area geological structure. The mineralized fault zones characterized by high conductivity and IP anomaly were delineated and they are the most promising for gold-deposits detection.</p>


2020 ◽  
Vol 6 (1) ◽  
pp. 18-39
Author(s):  
Areena Zaini ◽  
Haryantie Kamil ◽  
Mohd Yazid Abu

The Electrical & Electronic (E&E) company is one of Malaysia’s leading industries that has 24.5% in manufacturing sector production. With a continuous innovation of E&E company, the current costing being used is hardly to access the complete activities with variations required for each workstation to measure the un-used capacity in term of resources and cost. The objective of this work is to develop a new costing structure using time-driven activity-based costing (TDABC) at . This data collection was obtained at E&E company located at Kuantan, Pahang that focusing on magnetic component. The historical data was considered in 2018. TDABC is used to measure the un-used capacity by constructing the time equation and capacity cost rate. This work found three conditions of un-used capacity. Type I is pessimistic situation whereby according to winding toroid core, the un-used capacity of time and cost are -14820 hours and -MYR2.60 respectively. It means the system must sacrifice the time and cost more than actual apportionment. Type II is most likely situation whereby according to assembly process, the un-used capacity of time and cost are 7400 hours and MYR201575.45 respectively. It means the system minimize the time and cost which close to fully utilize from the actual apportionment. Type III is optimistic situation whereby according to alignment process, the un-used capacity of time and cost are 4120 hours and MYR289217.15 respectively. It means the system used small amount of cost and time from the actual apportionment.


2016 ◽  
Author(s):  
Felix Schindler ◽  
Bertram Steininger ◽  
Tim Kroencke

Sign in / Sign up

Export Citation Format

Share Document