Predictive Battery SoC Control for Dual Propulsion Differential Four Wheel Drive Electric Vehicle

Author(s):  
Utkal Ranjan Muduli ◽  
Khaled Al Jaafari ◽  
Ranjan Kumar Behera ◽  
Abdul R. Beig ◽  
Khalifa Al Hosani ◽  
...  
2018 ◽  
Vol 51 (31) ◽  
pp. 325-330
Author(s):  
Fengjiao Jia ◽  
Zhiyuan Liu ◽  
Hongliang Zhou ◽  
Ting Teng

2012 ◽  
Vol 476-478 ◽  
pp. 944-948 ◽  
Author(s):  
Xiao Long Liu ◽  
Shao Peng Zhu ◽  
Zhi Jun Wu

This paper constructs a dynamic model of a four-wheel drive electric vehicle, which contains a vehicle model and a brushless DC motor model. In order to improve the starting and acceleration performance of the electric vehicle, we design a speed and current double closed-loop speed control system based on the constructed dynamic electric vehicle model. The starting and acceleration process of the electric vehicle is simulated and analyzed by CarSim-Matlab/Simulink co-simulation. The effectiveness of the speed control system is evaluated by the co-simulation results. In addition, the robustness of the speed control system is also analyzed for different vehicle masses.


Author(s):  
Nair Nouria ◽  
Gasbaoui Brahim Ghazouni Abdelkader ◽  
Benoudjafer Cherif

In this paper, we will study a four-wheel drive electric vehicle (4WDEV)with two control strategies: conventional direct torque control CDTC and DTC based on fuzzy logic (DTFC). Our overall idea in this work is to show that the 4WDEV equipped with four induction motors providing the drive of the driving wheels controlled by the direct fuzzy torque control ensures good stability of the 4WDEV in the different topologies of the road, bends and slopes. and increases the range of the electric vehicle. Numerical simulations were performed on an electric vehicle powered by four 15 kW induction motors integrated into the wheels using the MATLAB / Simulink environment, where the reference speeds of each wheel (front and rear) are obtained using an electronic speed differential (ESD). This can eventually cause it to synchronize the wheel speeds in any curve. The speed of each wheel is controlled by two types of PI and FLC controllers to improve stability and speed response (in terms of setpoint tracking, disturbance rejection and climb time). Simulation results show that the proposed FLC control strategy reduces torque, flux and stator current ripple. While the4WDEV range was improved throughout the driving cycle and battery power consumption was reduced.


Sign in / Sign up

Export Citation Format

Share Document