Weighted rendezvous planning approach for network lifetime enhancement in wireless sensor networks

Author(s):  
L. Srimenaga ◽  
M. Maheswari
Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


2017 ◽  
Vol 13 (7) ◽  
pp. 155014771771759 ◽  
Author(s):  
Yalin Nie ◽  
Haijun Wang ◽  
Yujie Qin ◽  
Zeyu Sun

When monitoring the environment with wireless sensor networks, the data sensed by the nodes within event backbone regions can adequately represent the events. As a result, identifying event backbone regions is a key issue for wireless sensor networks. With this aim, we propose a distributed and morphological operation-based data collection algorithm. Inspired by the use of morphological erosion and dilation on binary images, the proposed distributed and morphological operation-based data collection algorithm calculates the structuring neighbors of each node based on the structuring element, and it produces an event-monitoring map of structuring neighbors with less cost and then determines whether to erode or not. The remaining nodes that are not eroded become the event backbone nodes and send their sensing data. Moreover, according to the event backbone regions, the sink can approximately recover the complete event regions by the dilation operation. The algorithm analysis and experimental results show that the proposed algorithm can lead to lower overhead, decrease the amount of transmitted data, prolong the network lifetime, and rapidly recover event regions.


Sign in / Sign up

Export Citation Format

Share Document