Reducing Development Time of Electric Machines with SyMSpace

Author(s):  
Siegfried Silber ◽  
Werner Koppelstatter ◽  
Gunther Weidenholzer ◽  
Gordan Segon ◽  
Gerd Bramerdorfer
Author(s):  
Vishnu Sharma ◽  
Vijay Singh Rathore ◽  
Chandikaditya Kumawat

Software reuse can improve software quality with the reducing cost and development time. Systematic reuse plan enhances cohesion and reduces coupling for better testability and maintainability. Software reuse approach can be adopted at the highest extent if relevant software components can be easily searched, adapted and integrated into new system. Large software industries hold their own well managed component libraries containing well tested software component with the project category based classification .Access to these repositories are very limited. Software reuse is facing so many problems and still not so popular. This is due to issues of general access, efficient search and adoption of software component. This paper propose a framework which resolves all of the above issues with providing easy access to components, efficient incremental semantics based search, repository management, versioning of components.


2019 ◽  
Vol 61 (12) ◽  
pp. 1192-1196
Author(s):  
Daniel Loos ◽  
Endre Barti ◽  
Rainer Wagener ◽  
Tobias Melz

Author(s):  
Deepak Goyal

Abstract Next generation assembly/package development challenges are primarily increased interconnect complexity and density with ever shorter development time. The results of this trend present some distinct challenges for the analytical tools/techniques to support this technical roadmap. The key challenge in the analytical tools/techniques is the development of non-destructive imaging for improved time to information. This paper will present the key drivers for the non-destructive imaging, results of literature search and evaluation of key analytical techniques currently available. Based on these studies requirements of a 3D imaging capability will be discussed. Critical breakthroughs required for development of such a capability are also summarized.


Author(s):  
I. N. Belezyakov ◽  
K. G. Arakancev

At present time there is a need to develop a methodology for electric motors design which will ensure the optimality of their geometrical parameters according to one or a set of criterias. With the growth of computer calculating power it becomes possible to develop methods based on numerical methods for electric machines computing. The article describes method of a singlecriterion evolutionary optimization of synchronous electric machines with permanent magnets taking into account the given restrictions on the overall dimensions and characteristics of structural materials. The described approach is based on applying of a genetic algorithm for carrying out evolutionary optimization of geometric parameters of a given configuration of electric motor. Optimization criteria may be different, but in automatic control systems high requirements are imposed to electromagnetic torque electric machine produces. During genetic algorithm work it optimizes given geometric parameters of the electric motor according to the criterion of its torque value, which is being calculated using finite element method.


Author(s):  
Dalilla da Silva Salvati ◽  
Júlia Fernandes Perroca ◽  
Sabrina Morilhas Simões ◽  
Antonio Leão Castilho ◽  
Rogerio Caetano da Costa

AbstractThe study characterized the structure of juveniles and sub-adults of Farfantepenaeus brasiliensis and F. paulensis in the Cananéia-Iguape estuarine lagoon system and its adjacent coastal area by evaluating the period of juvenile recruitment, sex ratio, growth, longevity, natural mortality, and development time until the late juvenile phase. Samples were collected from July 2012 to June 2014. Shrimps were identified by species and sex, and measured (carapace length – CL mm); 889 individuals of F. brasiliensis and 848 of F. paulensis were analysed. Females were more abundant than males for both species. The growth parameters of F. brasiliensis were: CL∞ = 45.5 mm, k = 1.8 year−1 for males and CL∞ = 55.2 mm, k = 1.6 year−1 for females; longevity of 2.52 years (males) and 2.88 years (females); and natural mortality of 1.71 (males) and 1.55 (females). For F. paulensis, the following values were observed: CL∞ = 40.7 mm, k = 2.3 year−1 for males and CL∞ = 56.5 mm, k = 1.9 year−1 for females; longevity of 2.04 years (males) and 2.37 years (females); and natural mortality of 2.39 (males) and 2.05 (females). The juvenile recruitment of both species peaked in January 2014. The development time until late juvenile phase was ~7 months (F. brasiliensis) and ~5 months (F. paulensis). Even though the highest abundance of juveniles did not occur in the closed season, fishing is forbidden in the estuarine area and the migration towards the adult population occurred close to or even during the closed season.


Sign in / Sign up

Export Citation Format

Share Document