Genetic algorithm application for optimization of geometry of synchronous electric motor with permanent magnets by criterion of electromagnetic torque

Author(s):  
I. N. Belezyakov ◽  
K. G. Arakancev

At present time there is a need to develop a methodology for electric motors design which will ensure the optimality of their geometrical parameters according to one or a set of criterias. With the growth of computer calculating power it becomes possible to develop methods based on numerical methods for electric machines computing. The article describes method of a singlecriterion evolutionary optimization of synchronous electric machines with permanent magnets taking into account the given restrictions on the overall dimensions and characteristics of structural materials. The described approach is based on applying of a genetic algorithm for carrying out evolutionary optimization of geometric parameters of a given configuration of electric motor. Optimization criteria may be different, but in automatic control systems high requirements are imposed to electromagnetic torque electric machine produces. During genetic algorithm work it optimizes given geometric parameters of the electric motor according to the criterion of its torque value, which is being calculated using finite element method.

Author(s):  
Roman A. Romanov ◽  
Tatyana V. Myasnikova ◽  
Alexey N. Matyunin

The article is devoted to improving the energy and performance characteristics of superminiature electric motors, which are widely used in modern devices of robotics and mechanotronics. With the development of digital and Autonomous robotic systems, the tasks of improving the efficiency of Executive micromechanisms that affect the functionality and duration of work in offline mode have become particularly relevant. Traditional design and technological solutions used in higher-power electric machines are not scalable to the field of superminiature electric machines. Domestic and foreign developers offer various design options and manufacturing technologies. The key design feature of the electric motor under consideration is a glass stator made by polycapillary fiber technology and an excitation system from rare-earth permanent magnets. In the wall of the glass case, holes are evenly distributed around the circumference, in which the control winding is laid. The motor excitation system is a two-pole permanent magnet located on the rotating rotor shaft. The purpose of the research is to determine the effect of changing the design of the excitation system by changing the location of the magnetic poles. The research uses software that simulates the electromagnetic field using the finite element method. In the course of research, it was found that a decrease in the body of a permanent magnet leads to a decrease in the electromagnetic moment, which is not compensated by a decrease in edge effects at the boundary of the poles of the magnet. However, an increase in the value of the maximum magnetic induction in the air gap allows us to conclude that edge effects at the pole boundary have a significant effect on reducing the energy characteristics of superminiature micromachines. Thus, the solutions proposed in this paper are not sufficient to increase the efficiency of the engine, but the data obtained indicate the need to reduce the edge effects of permanent magnets.


Author(s):  
Y Su ◽  
H Wang ◽  
W Chen

The design, fabrication, and testing of a novel bidirectional magnetic microactuator were presented in the paper. The microactuator is composed of an integrated planar coil and a flexible polydimethyl siloxane (PDMS) diaphragm with embedded CoNiMnP-based permanent magnet arrays. There is a 7 × 7 array of magnets in a unit. The PDMS diaphragm is 2 mm × mm × 40 μm and the magnet post is 50 × 50 × 20 μm. Computer simulation was applied to verify the geometrical parameters. Electroplating under external magnetic field is carried out to improve the magnetic properties of the electroplated magnet, including coercivity, remanence and magnetic energy, and so on. The measured maximum coercivity, remanence and maximum magnetic energy were 2623 Oe (208.73 kA/m), 0.2 T (2000 G), and 10.15 kJ/m3 with the magnetic post, respectively. Moreover, and the deflection of the PDMS membrane is proportional to the exciting current. In a case of 0.35 A current, the maximum deflection of the membrane is 45 μm. Adjusting the electroplating mould results in the variation of the electroplated structure, thus the calibration of the microactuator. Due to the biomedical compatibility and simplicity of the fabrication, the flexible membrane-based microactuator is potential to be used as micropump and optical switch, the microelectromechanical system applications.


2021 ◽  
Author(s):  
Tianying Wang ◽  
Yanjun Zhou ◽  
Honglin Tang ◽  
Shihua Zhang ◽  
Haiqing Tian

Abstract The JCSM concept (short for Jackup Combined Semisubmersible Multifunction Platform) is a new type of semisubmersible platform presented by the first author, which overcomes the shortcomings of the available semisubmersible platforms, and combines the advantages of the traditional semisubmersible platform, the Jackup platform and the new FPSO concept - IQFP. Due to the complicated interaction between stability and hydrodynamic performance, it is necessary to explore the effect of geometrical parameters of the main body on the stability and hydrodynamic performance in order to obtain the optimal design plan of a JCSM platform. Firstly, the structure components and innovations of the JCSM were briefly reviewed in order to facilitate readers to understand its full picture. Then, six independent geometric parameters were selected by carefully studying the shape characteristics of the initial design plan of a JCSM study case. Furthermore, the stability heights and motion responses of various floating bodies of the JCSM case with different geometric parameters in wave were calculated using boundary element method based on potential flow theory. Lastly, effect of the shape parameters on stability and hydrodynamic performance of the JCSM was qualitatively evaluated. The research would shed lights on the shape design of the JCSM main body.


2012 ◽  
Vol 6 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Seiji Aoyagi ◽  
◽  
Masato Suzuki ◽  
Tomokazu Takahashi ◽  
Jun Fujioka ◽  
...  

Offline teaching based on high positioning accuracy of a robot arm is desired to take the place of manual teaching. In offline teaching, joint angles are calculated using a kinematic model of the robot arm. However, a nominal kinematic model does not consider the errors arising in manufacturing or assembly, not to mention the non-geometric errors arising in gear transmission, arm compliance, etc. Therefore, a method of precisely calibrating the parameters in a kinematic model is required. For this purpose, it is necessary to measure the three-dimensional (3-D) absolute position of the tip of a robot arm. In this paper, a laser tracking system is employed as the measurement apparatus. The geometric parameters in the robot kinematic model are calibrated by minimizing errors between the measured positions and the predicted ones based on the model. The residual errors caused by non-geometric parameters are further reduced by using neural networks, realizing high positioning accuracy of sub-millimeter order. To speed up the calibration process, a smaller number of measuring points is preferable. Optimal measuring points, which realize high positioning accuracy while remaining small in number, are selected using Genetic Algorithm (GA).


Vestnik IGEU ◽  
2020 ◽  
pp. 31-45
Author(s):  
T.H. Abuziarov ◽  
A.S. Plehov ◽  
A.B. Dar’enkov ◽  
A.I. Ermolaev

When designing electric drives based on brushless DC motors with permanent magnets (BLDC), which have low level torque pulsations, the problem of modelling non-standard topological solutions appears. The known models of BLDC motors are either based on the assumptions about the symmetry of the stator pa-rameters of the electric motor and/or the ideal form of the phase back-EMF waveform, which reduce the accuracy of evaluating the effectiveness of the proposed solutions or prove unusable for modelling an operation of the electric motor with a non-standard semiconductor converter. It is necessary to develop a mathematical model of the BLDC motor-based electric drive that takes into account the structural features of the electric motor and allows for semiconductor converter configuration variability. The model is designed in the Matlab Simulink environment. The verification is carried out by comparing the modelling results with experimental data obtained previously by other researchers. The proposed method for generating phase back-EMF in the BLDC motor model provides the possibility for the user to set the EMF form templates independent for each phase. The proposed method for stator circuit simulating provides the user with access to each of the stator windings leads as well as with the possibility of asymmetric determination of each parameter of the electric motor. Upon verification, it has been shown that the difference in the control points between the simulated and experimental speed-torque curves does not exceed 3,5 %. The developed model allows analyzing the static and dynamic characteristics of operation modes of non-standard topology BLDC motor-based electric drives taking into account the stator pa-rameters asymmetry and the real phase back-EMF waveform. The specified features of the model allow exploring the operation of the designed electric drive, taking into account the BLDC motor and converter design. The model can be applied when checking atypical design decisions and when changing the set parameters of the electric drive and restrictions on working conditions and target functions to refine the control system algorithms and automate the search for optimal parameters of the motor and the semiconductor converter.


Author(s):  
Belli Zoubida ◽  
Mohamed Rachid Mekideche

Purpose – Reducing eddy current losses in magnets of electrical machines can be obtained by means of several techniques. The magnet segmentation is the most popular one. It imposes the least restrictions on machine performances. This paper investigates the effectiveness of the magnet circumferential segmentation technique to reduce these undesirable losses. The full and partial magnet segmentation are both studied for a frequency range from few Hz to a dozen of kHz. To increase the efficiency of these techniques to reduce losses for any working frequency, an optimization strategy based on coupling of finite elements analysis and genetic algorithm is applied. The purpose of this paper is to define the parameters of the total and partial segmentation that can ensure the best reduction of eddy current losses. Design/methodology/approach – First, a model to analyze eddy current losses is presented. Second, the effectiveness of full and partial magnet circumferential segmentation to reduce eddy loss is studied for a range of frequencies from few Hz to a dozen of kHz. To achieve these purposes a 2-D finite element model is developed under MATLAB environment. In a third step of the work, an optimization process is applied to adjust the segmentation design parameters for best reduction of eddy current losses in case of surface mounted permanent magnets synchronous machine. Findings – In case of the skin effect operating, both full and partial magnet segmentations can lead to eddy current losses increases. Such deviations of magnet segmentation techniques can be avoided by an appropriate choice of their design parameters. Originality/value – Few works are dedicated to investigate partial magnet segmentation for eddy current losses reduction. This paper studied the effectiveness and behaviour of partial segmentation for different frequency ranges. To avoid eventual anomalies related to the skin effect an optimization process based on the association of the finite elements analysis to genetic algorithm method is adopted.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
M. M. Gudzenko ◽  
◽  
V. P. Vasyliv ◽  
M. M. Mushtruk ◽  
M. M. Zheplinska ◽  
...  

In modern economic conditions, the chosen technology of raw material processing and the choice of the necessary equipment for both the line as a whole and the oil press are of great importance in oil production. In small-capacity workshops, screw presses of various designs are used. The twin-screw extruder occupied a certain niche among the press equipment with a productivity of 150–500 kg/h. Their use can significantly simplify the technology of oilseed processing. They combine operations of heat treatment, grinding, and pressing of vegetable oil. It is important to study the influence of geometric parameters of the oil pressure path and screw nozzle on the oil yield. In twin-screw extruders, it is rational to choose the pitch of the worm, the width of the channel between the turns, the width of the crest of the turn and the length of the nozzle with variable geometrical parameters. The analysis and selection of geometrical parameters of working bodies of a twin-screw extruder on the basis of theoretical calculations are carried out. Two sets of experimental working bodies with the changed geometrical parameters are made. Their theoretical degree of compression is determined, which is 5.50, 4.69, and 4.33, respectively. It is experimentally confirmed that the oil yield depends on the degree of compression due to the geometric parameters of the screw. The effect of a sharp drop in the free volume of the screw on the energy performance and press extruder performance has been revealed. The general nature of the change in the free volume in the areas of nozzle groups is accompanied by an uneven decrease of 40–80% towards the release of oil cake. The nature of the change in the free volume of turns along the length of the screw shaft characterizes the correctness of its design. The selection of rational geometric parameters of the working bodies should be considered in combination with other design parameters, which will intensify the process of oil pressing.


Author(s):  
Yulong Tian ◽  
Tao Gao ◽  
Weifang Zhai ◽  
Yaying Hu ◽  
Xinfeng Li

In this paper, a genetic algorithm with sexual reproduction and niche selection technology is proposed. Simple genetic algorithm has been successfully applied to many evolutionary optimization problems. But there is a problem of premature convergence for complex multimodal functions. To solve it, the frame and realization of niche genetic algorithm based on sexual reproduction are presented. Age and sexual structures are given to the individuals referring the sexual reproduction and “niche” phenomena, importing the niche selection technology. During age and sexual operators, different evolutionary parameters are given to the individuals with different age and sexual structures. As a result, this genetic algorithm can combat premature convergence and keep the diversity of population. The testing for Rastrigin function and Shubert function proves that the niche genetic algorithm based on sexual reproduction is effective.


Sign in / Sign up

Export Citation Format

Share Document