The Impact of Climate Change Information on Household Flight Choice: Preliminary Results

Author(s):  
James Carroll ◽  
Michael Howard ◽  
William Brazil ◽  
Eleanor Denny
Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1781 ◽  
Author(s):  
Lei Tian ◽  
Jiming Jin ◽  
Pute Wu ◽  
Guo-yue Niu

Understanding hydrological responses to climate change and land use and land cover change (LULCC) is important for water resource planning and management, especially for water-limited areas. The annual streamflow of the Wuding River Watershed (WRW), the largest sediment source of the Yellow River in China, has decreased significantly over the past 50 years at a rate of 5.2 mm/decade. Using the Budyko equation, this study investigated this decrease with the contributions from climate change and LULCC caused by human activities, which have intensified since 1999 due to China’s Grain for Green Project (GFGP). The Budyko parameter that represents watershed characteristics was more reasonably configured and derived to improve the performance of the Budyko equation. Vegetation changes were included in the Budyko equation to further improve its simulations, and these changes showed a significant upward trend due to the GFGP based on satellite data. An improved decomposition method based on the Budyko equation was used to quantitatively separate the impact of climate change from that of LULCC on the streamflow in the WRW. Our results show that climate change generated a dominant effect on the streamflow and decreased it by 72.4% in the WRW. This climatic effect can be further explained with the drying trend of the Palmer Severity Drought Index, which was calculated based only on climate change information for the WRW. In the meantime, although human activities in this watershed have been very intense, especially since 1999, vegetation cover increase contributed a 27.6% decline to the streamflow, which played a secondary role in affecting hydrological processes in the WRW.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


2012 ◽  
Vol 20 (1) ◽  
pp. 108-115 ◽  
Author(s):  
Wu Weiwei ◽  
Xu Haigen ◽  
Wu Jun ◽  
Cao Mingchang

Sign in / Sign up

Export Citation Format

Share Document