Charge-coupled Device with Integrated Electron Multiplication for Low Light Level Imaging

Author(s):  
Viacheslav Dyumin ◽  
Konstantin Smirnov ◽  
Vadim Davydov ◽  
Nikita Myazin
2011 ◽  
Vol 317-319 ◽  
pp. 1062-1067 ◽  
Author(s):  
Yu Gui Zhang ◽  
Tao Li ◽  
Zhi Kuan He ◽  
Zhi Xue Han

A sine wave with high frequency and high voltage is a key driving signal for EMCCD to realize electron multiplication. According to signal requirements, DDS technique based on FPGA is employed and then sine-formed code-stream is converted to low-voltage sine wave by a digital/analog device. Afterwards, filtering and high-voltage amplification are used to acquire the sine wave with high frequency and high voltage. For the high-voltage amplification, the transfer function of the circuit system is used to correct the circuit parameters, and at last linear amplified sine wave signal with the functions of phase adjusting and amplitude controlling is obtained. By using the sine-wave to drive the EMCCD, low light level imaging is well acquired by the camera and the relationship between sine-wave amplitude and multiplication gain is tested.


Author(s):  
G.Y. Fan ◽  
J.M. Cowley

In recent developments, the ASU HB5 has been modified so that the timing, positioning, and scanning of the finely focused electron probe can be entirely controlled by a host computer. This made the asynchronized handshake possible between the HB5 STEM and the image processing system which consists of host computer (PDP 11/34), DeAnza image processor (IP 5000) which is interfaced with a low-light level TV camera, array processor (AP 400) and various peripheral devices. This greatly facilitates the pattern recognition technique initiated by Monosmith and Cowley. Software called NANHB5 is under development which, instead of employing a set of photo-diodes to detect strong spots on a TV screen, uses various software techniques including on-line fast Fourier transform (FFT) to recognize patterns of greater complexity, taking advantage of the sophistication of our image processing system and the flexibility of computer software.


Author(s):  
W. Lin ◽  
J. Gregorio ◽  
T.J. Holmes ◽  
D. H. Szarowski ◽  
J.N. Turner

A low-light level video microscope with long working distance objective lenses has been built as part of our integrated three-dimensional (3-D) light microscopy workstation (Fig. 1). It allows the observation of living specimens under sufficiently low light illumination that no significant photobleaching or alternation of specimen physiology is produced. The improved image quality, depth discrimination and 3-D reconstruction provides a versatile intermediate resolution system that replaces the commonly used dissection microscope for initial image recording and positioning of microelectrodes for neurobiology. A 3-D image is displayed on-line to guide the execution of complex experiments. An image composed of 40 optical sections requires 7 minutes to process and display a stereo pair.The low-light level video microscope utilizes long working distance objective lenses from Mitutoyo (10X, 0.28NA, 37 mm working distance; 20X, 0.42NA, 20 mm working distance; 50X, 0.42NA, 20 mm working distance). They provide enough working distance to allow the placement of microelectrodes in the specimen.


Sign in / Sign up

Export Citation Format

Share Document