The Leverage Effect of Large Capacity Centralized Heat Storage for Wind Power Consumption

Author(s):  
Wei-Chun Ge ◽  
Shun-Jiang Wang ◽  
Huan-Huan Luo ◽  
Yan-Feng Ge ◽  
Gui-Ping Zhou ◽  
...  
2021 ◽  
Vol 271 ◽  
pp. 01021
Author(s):  
Wang Zhenyu ◽  
Zhang Jianhua ◽  
Shao Chong ◽  
Xu Lanlan ◽  
Han Yongjun

With the rapid development of wind power, the randomness and volatility of wind power have also caused severe problems of wind power consumption. The phenomenon of wind abandonment is particularly prominent in the "three north" areas. The environmental protection and controllability of regenerative electric heating provide a way for wind absorption and abandonment. Therefore, this paper proposes a model to promote wind power consumption by using regenerative electric heating. Firstly, the principle and advantages of the heat storage electric heating equipment are described; secondly, the fine modeling of regenerative electric heating is carried out;then, the mode of using regenerative electric heating to promote wind power consumption is designed;finally, an example is given to analyze the wind power consumption effect and the revenue of load aggregators.Therefore, it is verified that this mode can effectively promote wind power consumption and reduce wind abandon generation, and provide reference for alleviating wind abandon and power limit problem.


Author(s):  
Shuang RONG ◽  
Xiao-guang CHEN ◽  
Ming-yu XU ◽  
Niao GUO ◽  
Wen-bo HAO ◽  
...  

2017 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Xie Lubing ◽  
Xiaoming Rui ◽  
Xiaozhao Fan ◽  
Ruijing Shi

Numerous problems have emerged with the rapid development of wind power in Xinjiang. The predominant problem is the inhibition of the healthy development of the wind power industry by wind power curtailment in Xinjiang. In this study, wind power heating and high energy-consuming industries were coupled to increase wind power consumption in Xinjiang on the load side. The feasibility analysis of wind power heating in Dabancheng showed that the heating load characteristics coincide with the wind characteristics and the electric heating technology can fulfill the requirements for wind power heating. A business model innovation achieved a win–win situation. Furthermore, a wind power heating system was designed in Dabancheng, the boiler capacity and the heat storage capacity were calculated, and a heating system model with heat storage technology was established. Wind power heating with heat storage can improve the consumption of wind power and increase the local electric load and system adjustability. Furthermore, heating with curtailed wind power can save 2942 tons of standard coal as well as reduce 5172 tons of CO2, 2.9 tons of SO2, 22 tons of NOX, and 2 tons of soot emissions. Non-grid-connected distributed wind power was applied to the high energy-consuming coal chemical industry to reduce wind power curtailment, expand the consumption market, and reduce pollution. A multifunctional wind-photovoltaic complementary system with hydrogen energy storage coupled with traditional high energy-consuming coal chemical industry was established. The implementation plan using wind and solar energy to produce, store, and apply hydrogen energy was proven beneficial. Wind power consumption was improved on the load side. The wind power curtailment problem was reduced by increasing local load using the curtailed wind power to provide clean heat in Dabancheng and constructing the multifunctional wind–photovoltaic complementary system. This study will contribute to the healthy and sustainable development of the wind power industry in Xinjiang.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3129
Author(s):  
Jewon Oh ◽  
Daisuke Sumiyoshi ◽  
Masatoshi Nishioka ◽  
Hyunbae Kim

The mass introduction of renewable energy is essential to reduce carbon dioxide emissions. We examined an operation method that combines the surplus energy of photovoltaic power generation using demand response (DR), which recognizes the balance between power supply and demand, with an aquifer heat storage system. In the case that predicts the occurrence of DR and performs DR storage and heat dissipation operation, the result was an operation that can suppress daytime power consumption without increasing total power consumption. Case 1-2, which performs nighttime heat storage operation for about 6 h, has become an operation that suppresses daytime power consumption by more than 60%. Furthermore, the increase in total power consumption was suppressed by combining DR heat storage operation. The long night heat storage operation did not use up the heat storage amount. Therefore, it is recommended to the heat storage operation at night as much as possible before DR occurs. In the target area of this study, the underground temperature was 19.1 °C, the room temperature during cooling was about 25 °C and groundwater could be used as the heat source. The aquifer thermal energy storage (ATES) system in this study uses three wells, and consists of a well that pumps groundwater, a heat storage well that stores heat and a well that used heat and then returns it. Care must be taken using such an operation method depending on the layer configuration.


Sign in / Sign up

Export Citation Format

Share Document