A New Combined Scheduling Method of Thermal-Wind Power Considering Grid Restrictions and Wind Power Consumption

Author(s):  
Ziqi Zhu ◽  
Mingliang Han ◽  
Luo Li ◽  
Xing Li
Solar Energy ◽  
2003 ◽  
Author(s):  
G. R. Bhagwatikar ◽  
W. Z. Gandhare

It is well known that the wind power has definitely certain impact on the grid power. Issues associated with the integration of wind power into the utility grid are interface issues, operational issues and planning issues. Interface issues include harmonics, reactive power consumption, voltage regulation and frequency control. Operational issues are intermittent power generation, operating reserve requirements, unit commitment and economic despatch. And planning issues are concerned with intermittent wind resources compared to conventional power resources. An important question, when connecting the wind turbine generators to the utility grid, is how much the power / voltage quality will be influenced, since the power production by wind turbines is intermittent, quantity wise as well as quality wise. This paper is focused on the on comparison between the constant speed wind turbines and variable speed wind turbines, reactive power consumption and harmonics generated by both wind turbines. Total harmonic distortion is calculated by the application of C++ software and a comparison is done between the generators with respect to the harmonics. It is observed that constant speed wind turbine generates low order harmonics and variable speed turbine generates high order harmonics. On the basis of results, some solutions are suggested to improve the wind power quality and to reduce reactive power consumption. It seems that variable speed wind turbines with electronic interface are better with respect to the utility grid point of view.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1789 ◽  
Author(s):  
Apostolos Karalis ◽  
Dimitrios Zorbas ◽  
Christos Douligeris

IEEE802.15.4-time slotted channel hopping (TSCH) is a medium access control (MAC) protocol designed to support wireless device networking, offering high reliability and low power consumption, two features that are desirable in the industrial internet of things (IIoT). The formation of an IEEE802.15.4-TSCH network relies on the periodic transmissions of network advertising frames called enhanced beacons (EB). The scheduling of EB transmissions plays a crucial role both in the joining time and in the power consumption of the nodes. The existence of collisions between EB is an important factor that negatively affects the performance. In the worst case, all the neighboring EB transmissions of a node may collide, a phenomenon which we call a full collision. Most of the EB scheduling methods that have been proposed in the literature are fully or partially based on randomness in order to create the EB transmission schedule. In this paper, we initially show that the randomness can lead to a considerable probability of collisions, and, especially, of full collisions. Subsequently, we propose a novel autonomous EB scheduling method that eliminates collisions using a simple technique that does not increase the power consumption. To the best of our knowledge, our proposed method is the first non-centralized EB scheduling method that fully eliminates collisions, and this is guaranteed even if there are mobile nodes. To evaluate our method, we compare our proposal with recent and state-of-the-art non-centralized network-advertisement scheduling methods. Our evaluation does not consider only fixed topology networks, but also networks with mobile nodes, a scenario which has not been examined before. The results of our simulations demonstrate the superiority of our method in terms of joining time and energy consumption.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2375
Author(s):  
Yuwei Zhang ◽  
Wenying Liu ◽  
Yue Huan ◽  
Qiang Zhou ◽  
Ningbo Wang

The rapidly increasing penetration of wind power into sending-side systems makes the wind power curtailment problem more severe. Enhancing the total transfer capability (TTC) of the transmission channel allows more wind power to be delivered to the load center; therefore, the curtailed wind power can be reduced. In this paper, a new method is proposed to enhance TTC, which works by optimizing the day-ahead thermal generation schedules. First, the impact of thermal generation plant/unit commitment on TTC is analyzed. Based on this, the day-ahead thermal generation scheduling rules to enhance TTC are proposed herein, and the corresponding optimization models are established and solved. Then, the optimal day-ahead thermal generation scheduling method to enhance TTC is formed. The proposed method was validated on the large-scale wind power base sending-side system in Gansu Province in China; the results indicate that the proposed method can significantly enhance TTC, and therefore, reduce the curtailed wind power.


Sign in / Sign up

Export Citation Format

Share Document