A machine learning framework for auto classification of imaging system exams in hospital setting for utilization optimization

Author(s):  
Meru A Patil ◽  
Ravindra B Patil ◽  
P Krishnamoorthy ◽  
Jacob John
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Jung-gu Choi ◽  
Inhwan Ko ◽  
Jeongjae Kim ◽  
Yeseul Jeon ◽  
Sanghoon Han

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sergio Martin del Campo Barraza ◽  
William Lindskog ◽  
Davide Badalotti ◽  
Oskar Liew ◽  
Arash Toyser

Data-based models built using machine learning solutions are becoming more prominent in the condition monitoring, maintenance, and prognostics fields. The capacity to build these models using a machine learning approach depends largely in the quality of the data. Of particular importance is the availability of labelled data, which describes the conditions that are intended to be identified. However, properly labelled data that is useful in many machine learning strategies is a scare resource. Furthermore, producing high-quality labelled data is expensive, time-consuming and a lot of times inaccurate given the uncertainty surrounding the labeling process and the annotators.  Active Learning (AL) has emerged as a semi-supervised approach that enables cost and time reductions of the labeling process. This approach has had a delayed adoption for time series classification given the difficulty to extract and present the time series information in such a way that it is easy to understand for the human annotator who incorporates the labels. This difficulty arises from the large dimensionality that many of these time series possess. This challenge is exacerbated by the cold-start problem, where the initial labelled dataset used in typical AL frameworks may not exist. Thus, the initial set of labels to be allocated to the time series samples is not available. This last challenge is particularly common on many condition monitoring applications where data samples of specific faults or problems does not exist. In this article, we present an AL framework to be used in the classification of time series from industrial process data, in particular vibration waveforms originated from condition monitoring applications. In this framework, we deal with the absence of labels to train an initial classification model by introducing a pre-clustering step. This step uses an unsupervised clustering algorithm to identify the number of labels and selects the points with a stronger group belonging as initial samples to be labelled in the active learning step. Furthermore, this framework presents two approaches to present the information to the annotator that can be via time-series imaging and automatic extraction of statistical features. Our work is motivated by the interest to facilitate the effort required for labeling time-series waveforms, while maintaining a high level of accuracy and consistency on those labels. In addition, we study the number of time-series samples that require to be labelled to achieve different levels of classification accuracy, as well as their confidence intervals. These experiments are carried out using vibration signals from a well-known rolling element bearing dataset and typical process data from a production plant.   An active learning framework that considers the conditions of the data commonly found in maintenance and condition monitoring applications while presenting the data in ways easy to interpret by human annotators can facilitate the generation reliable datasets. These datasets can, in turn, assist in the development of data-driven models that describe the many different processes that a machine undergoes.


2021 ◽  
Vol 14 (3) ◽  
pp. 1231-1247
Author(s):  
Lokesh Singh ◽  
Rekh Ram Janghel ◽  
Satya Prakash Sahu

Purpose:Less contrast between lesions and skin, blurriness, darkened lesion images, presence of bubbles, hairs are the artifactsmakes the issue challenging in timely and accurate diagnosis of melanoma. In addition, huge similarity amid nevus lesions and melanoma pose complexity in investigating the melanoma even for the expert dermatologists. Method: In this work, a computer-aided diagnosis for melanoma detection (CAD-MD) system is designed and evaluated for the early and accurate detection of melanoma using thepotentials of machine, and deep learning-based transfer learning for the classification of pigmented skin lesions. The designed CAD-MD comprises of preprocessing, segmentation, feature extraction and classification. Experiments are conducted on dermoscopic images of PH2 and ISIC 2016 publicly available datasets using machine learning and deep learning-based transfer leaning models in twofold: first, with actual images, second, with augmented images. Results:Optimal results are obtained on augmented lesion images using machine learning and deep learning models on PH2 and ISIC-16 dataset. The performance of the CAD-MD system is evaluated using accuracy, sensitivity, specificity, dice coefficient, and jacquard Index. Conclusion:Empirical results show that using the potentials of deep learning-based transfer learning model VGG-16 has significantly outperformed all employed models with an accuracy of 99.1% on the PH2 dataset.


2021 ◽  
Vol 3 (1) ◽  
pp. 206-213
Author(s):  
Qixiang Luo ◽  
Elizabeth A. Holm ◽  
Chen Wang

A machine learning framework was developed to classify complex carbon nanostructures from TEM images.


Author(s):  
Padmavathi .S ◽  
M. Chidambaram

Text classification has grown into more significant in managing and organizing the text data due to tremendous growth of online information. It does classification of documents in to fixed number of predefined categories. Rule based approach and Machine learning approach are the two ways of text classification. In rule based approach, classification of documents is done based on manually defined rules. In Machine learning based approach, classification rules or classifier are defined automatically using example documents. It has higher recall and quick process. This paper shows an investigation on text classification utilizing different machine learning techniques.


Author(s):  
Hyeuk Kim

Unsupervised learning in machine learning divides data into several groups. The observations in the same group have similar characteristics and the observations in the different groups have the different characteristics. In the paper, we classify data by partitioning around medoids which have some advantages over the k-means clustering. We apply it to baseball players in Korea Baseball League. We also apply the principal component analysis to data and draw the graph using two components for axis. We interpret the meaning of the clustering graphically through the procedure. The combination of the partitioning around medoids and the principal component analysis can be used to any other data and the approach makes us to figure out the characteristics easily.


Sign in / Sign up

Export Citation Format

Share Document