The timing of theta phase synchronization accords with vigilant attention

Author(s):  
Jinwen Wei ◽  
Yufeng Ke ◽  
Chang Sun ◽  
Xingwei An ◽  
Hongzhi Qi ◽  
...  
Mindfulness ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 643-659 ◽  
Author(s):  
Jake Robert Payne ◽  
Oliver Baell ◽  
Harry Geddes ◽  
Bernadette Fitzgibbon ◽  
Melanie Emonson ◽  
...  

2007 ◽  
Vol 25 (6) ◽  
pp. 1823-1831 ◽  
Author(s):  
Rajeevan T. Narayanan ◽  
Thomas Seidenbecher ◽  
Christian Kluge ◽  
Jorge Bergado ◽  
Oliver Stork ◽  
...  

2019 ◽  
Author(s):  
Jaejoong Kim ◽  
Bumseok Jeong

AbstractIn the resting state, heartbeats evoke cortical responses called heartbeat-evoked responses (HERs). While previous studies reported regional level HERs, researchers have not determined how heartbeat is processed at the cortical network level. Using resting-state magnetoencephalography data from 87 human subjects of both genders provided by the Human Connectome Project, we first showed that heartbeat increases the phase synchronization between cortical regions in the theta frequency, which forms a network structure, and we called this network a heartbeat-evoked network (HEN). The HEN was not an artefactual increase in phase synchronization. The HEN was partitioned into three modules with connector hubs in each module. The first module contained major interoception-related regions and thus was called a visceromotor-interoceptive network (VIN) displaying the strongest synchronization among modules, suggesting a major role for the VIN in processing heartbeat information. Two modules contained regions involved in the default mode network (DMN). The HEN structure was not fixed, but dynamically changed. The most prominent change was observed at approximately 200 ms after R-peak of the electrocardiogram, which was quantified based on the ‘flexibility’ of the network. Furthermore, the strongest synchronization within VIN was observed before heartbeat stimulated the cortex, which might be related to the prediction of an afferent heartbeat signal, thus supporting an interoceptive coding framework. Based on our results, the heartbeat is processed at the network level, and this result provides a useful framework that may potentially explain previous results of the regional level HER modulation through network-level processing.Significance statementThe resting-state network is composed of several networks supporting different functions. However, although the heartbeat is processed in the cortical regions, even in the resting state, the network supporting this function is unknown. Thus, we identified and investigated the heartbeat-evoked network (HEN), a network composed of significantly increased theta-phase synchronization between cortical regions after a heartbeat. The HEN comprised three modules. In particularly, the visceromotor-interoceptive network was likely to play a major role in network-level heartbeat processing and displayed the strongest synchronization immediately before the heartbeat enters the CNS, which supports an interoceptive predictive coding framework. These results provide a novel framework that may improve our understanding of cortical heartbeat processing from a network perspective.


NeuroImage ◽  
2020 ◽  
Vol 212 ◽  
pp. 116665 ◽  
Author(s):  
Alberto Ara ◽  
Josep Marco-Pallarés

2017 ◽  
Vol 27 (20) ◽  
pp. 3143-3148.e6 ◽  
Author(s):  
Andrew Clouter ◽  
Kimron L. Shapiro ◽  
Simon Hanslmayr

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alberto Ara ◽  
Josep Marco-Pallarés

AbstractMusic-evoked pleasantness has been extensively reported to be modulated by familiarity. Nevertheless, while the brain temporal dynamics underlying the process of giving value to music are beginning to be understood, little is known about how familiarity might modulate the oscillatory activity associated with music-evoked pleasantness. The goal of the present experiment was to study the influence of familiarity in the relation between theta phase synchronization and music-evoked pleasantness. EEG was recorded from 22 healthy participants while they were listening to both familiar and unfamiliar music and rating the experienced degree of evoked pleasantness. By exploring interactions, we found that right fronto-temporal theta synchronization was positively associated with music-evoked pleasantness when listening to unfamiliar music. On the contrary, inter-hemispheric temporo-parietal theta synchronization was positively associated with music-evoked pleasantness when listening to familiar music. These results shed some light on the possible oscillatory mechanisms underlying fronto-temporal and temporo-parietal connectivity and their relationship with music-evoked pleasantness and familiarity.


2017 ◽  
Author(s):  
Matthias J. Gruber ◽  
Liang-Tien Hsieh ◽  
Bernhard P. Staresina ◽  
Christian E. Elger ◽  
Juergen Fell ◽  
...  

AbstractEvents that violate predictions are thought to not only modulate activity within the hippocampus and prefrontal cortex, but also to enhance communication between the two regions. Several studies in rodents have shown that synchronized theta oscillations facilitate communication between the prefrontal cortex and hippocampus during salient events, but it remains unclear whether similar oscillatory mechanisms support interactions between the two regions in humans. Here, we had the rare opportunity to conduct simultaneous electrophysiological recordings from the human hippocampus and prefrontal cortex from two patients undergoing presurgical evaluation for pharmaco-resistant epilepsy. Recordings were conducted during a task that involved encoding of contextually expected and unexpected visual stimuli. Across both patients, hippocampal-prefrontal theta phase synchronization was significantly higher during encoding of unexpected study items, compared to contextually expected study items. In contrast, we did not find increased theta synchronization between the prefrontal cortex and rhinal cortex. Our findings are consistent with the idea that theta oscillations orchestrate communication between the hippocampus and prefrontal cortex during the processing of contextually salient information.


Sign in / Sign up

Export Citation Format

Share Document