A Comparative Study of Hourly Wind Speed and Power Forecasting Using Deep Learning Networks, Weka Time Series, and ARIMA Algorithms for Smart Grid Integration

Author(s):  
Abdussalam T. Mohamed ◽  
Hamed H. Aly ◽  
Timothy A. Little
2020 ◽  
Vol 140 ◽  
pp. 110121 ◽  
Author(s):  
Abdelhafid Zeroual ◽  
Fouzi Harrou ◽  
Abdelkader Dairi ◽  
Ying Sun

2020 ◽  
Vol 12 (6) ◽  
pp. 990
Author(s):  
Raveerat Jaturapitpornchai ◽  
Poompat Rattanasuwan ◽  
Masashi Matsuoka ◽  
Ryosuke Nakamura

The limitations in obtaining sufficient datasets for training deep learning networks is preventing many applications from achieving accurate results, especially when detecting new constructions using time-series satellite imagery, since this requires at least two images of the same scene and it must contain new constructions in it. To tackle this problem, we introduce Chronological Order Reverse Network (CORN)—an architecture for detecting newly built constructions in time-series SAR images that does not require a large quantity of training data. The network uses two U-net adaptations to learn the changes between images from both Time 1–Time 2 and Time 2–Time 1 formats, which allows it to learn double the amount of changes in different perspectives. We trained the network with 2028 pairs of 256 × 256 pixel SAR images from ALOS-PALSAR, totaling 4056 pairs for the network to learn from, since it learns from both Time 1–Time 2 and Time 2–Time 1. As a result, the network can detect new constructions more accurately, especially at the building boundary, compared to the original U-net trained by the same amount of training data. The experiment also shows that the model trained with CORN can be used with images from Sentinel-1. The source code is available at https://github.com/Raveerat-titech/CORN.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yongjiu Liu ◽  
Li Li ◽  
Shenglin Zhou

There are many prediction models that have been adopted to predict uncertain and non-linear photovoltaic power time series. Nonetheless, most models neglected the validity of data preprocessing and ensemble learning strategies, which leads to low forecasting precision and low stability of photovoltaic power. To effectively enhance photovoltaic power forecasting accuracy and stability, an ensemble forecasting frame based on the data pretreatment technology, multi-objective optimization algorithm, statistical method, and deep learning methods is developed. The proposed forecasting frame successfully integrates the advantages of multiple algorithms and validly depict the linear and nonlinear characteristic of photovoltaic power time series, which is conductive to achieving accurate and stable photovoltaic power forecasting results. Three datasets of 15-min photovoltaic power output data obtained from different time periods in Belgium were employed to verify the validity of the proposed system. The simulation results prove that the proposed forecasting frame positively surpasses all comparative hybrid models, ensemble models, and classical models in terms of prediction accuracy and stabilization. For one-, two-, and three-step predictions, the MAPE values obtained from the proposed frame were less than 2, 3, and 5%, respectively. Discussion results also verify that the proposed forecasting frame is obviously different from other comparative models, and is more stable and high-efficiency. Thus, the proposed frame is highly serviceable in elevating photovoltaic power forecasting performance and can be used as an efficient instrument for intelligent grid programming.


Sign in / Sign up

Export Citation Format

Share Document