Power electronic circuit based implementation of a solar PV emulator using a power factor corrected buck converter

Author(s):  
Prateek Garg ◽  
Priyanshi ◽  
G. Bhuvaneswari
Author(s):  
Aditya Tiwary

New commercial power electronic controllers come to the market almost every day to help improve electronic circuit and system performance and efficiency. In DC–DC switching-mode converters, a simple and elegant hysteretic controller is used to regulate the basic buck, boost and buck–boost converters under slightly different configurations. In AC–DC converters, the input current shaping for power factor correction posts a constraint. But, several brilliant commercial controllers are demonstrated for boost and fly back converters to achieve almost perfect power factor correction. In this paper a comprehensive review of the various advanced optimization techniques used in power electronic controllers is presented.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6332
Author(s):  
Srinivasan Vadivel ◽  
C. S. Boopthi ◽  
Sridhar Ramasamy ◽  
Mominul Ahsan ◽  
Julfikar Haider ◽  
...  

The output of a photovoltaic array is reduced considerably when PV panels are shaded even partially. The impact of shading causes an appreciable loss in power delivery, since the PV panels are connected in series and parallel to contribute to the required voltage and power for the load. The prevailing research on mitigating the shading impact is mostly based on complex reconfiguration strategies where the PV panels are subjected to complex rewiring schemes. On the other hand, to disperse the shading many studies in the literature defend the physical rearrangement of the panels. The available intensive reconfiguration schemes, such as the series parallel (SP), bridge link (BL), honeycomb (HC), and total cross tied (TCT) schemes, try only to mitigate the shading impact and there is no scope for compensation; as a result, a loss of output power is inevitable. In the proposed research work, both the mitigation of and the compensation for the losses incurred due to shading are studied. In this work, an optimal reconfiguration scheme is adopted to reduce the shading impact and a power electronic circuit with a battery source is designed to compensate for the shading losses in all aspects. In the optimal reconfiguration scheme, a bifurcation strategy is adopted in each column and the electrical connections of the PV panels are interchanged such that the shading impact is dispersed. The power electronic circuit consists of a half-bridge buck converter with a battery source that injects the current required by a shaded column. This setup compensates for the shaded PV array’s power and improves the efficiency of the total system. The proposed scheme was implemented in a 3200 W system and subjected to various shading patterns, including single panel shading, corner shading, long and wide shading, and random shading. The proposed scheme was simulated in the MATLAB Simulink environment and compared with static 4 × 4 PV array configurations, including the series parallel (SP), bridge link (BL), honeycomb (HC), and total cross tied (TCT) configurations. The comparative performance was assessed in terms of mismatch power loss, fill factor, and efficiency. The proposed system is suitable for all shading patterns and was proved to be very efficient even in the worst shading, where 1353 W was saved.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


A reliable grid connected Photovoltaic (PV) system require effective control schemes for efficient use of solar energy. This paper presents a three-phase grid tied PV system with decoupled real and reactive power control to achieve desired power factor with Maximum Power Point Tracking (MPPT) controller to get maximum solar energy. The synchronous reference frame (dq) control along with decoupling concept is used to control the DC-AC inverter output, while the Phase Locked Loop (PLL) synchronization technique is used to monitor and synchronize the voltage and current at the grid side. The DC-DC converter with Incremental Conductance (InC) based MPPT model is also designed in this paper due to better accuracy compared to Perturb & Observe (P&O) algorithm. The simulation is performed in MATLAB/SIMULINK and a 31.5 kW PV system is modelled to get 30 kW power with the help of MPPT at Standard Test Conditions (STC). Any power factor value between 0.85 lagging to 0.9 leading can be obtained by changingreference q current in this inverter control strategy. The simulation results show that the change of reactive powerdoes not affecttheactive power values of the system, which verifies the effectiveness of the decoupled control strategy of the inverter.


Sign in / Sign up

Export Citation Format

Share Document