Nonlinear mechanical springs for counteracting nonlinearities in gap-closing electrostatic actuators

Author(s):  
Ben Rivlin ◽  
Shai Shmulevich ◽  
Aharon Joffe ◽  
David Elata
2005 ◽  
Vol 60 (9) ◽  
pp. 1041-1042 ◽  
Author(s):  
John Raven
Keyword(s):  

2016 ◽  
Vol 11 (9) ◽  
pp. 528-531 ◽  
Author(s):  
Chong Li ◽  
Robert N. Dean ◽  
George T. Flowers

2001 ◽  
Vol 29 (3) ◽  
pp. 186-196 ◽  
Author(s):  
X. Yan

Abstract A method is described to predict relative body turn up endurance of radial truck tires using the finite element method. The elastomers in the tire were simulated by incompressible elements for which the nonlinear mechanical properties were described by the Mooney-Rivlin model. The belt, carcass, and bead were modeled by an equivalent orthotropic material model. The contact constraint of a radial tire structure with a flat foundation and rigid rim was treated using the variable constraint method. Three groups of tires with different body turn up heights under inflation and static footprint loading were analyzed by using the finite element method. Based on the detail analysis for stress analysis parameters in the critical regions in the tires, the relative body turn up edge endurance was predicted.


Author(s):  
David Julian Gonzalez Maldonado ◽  
Peter Hagedorn ◽  
Thiago Ritto ◽  
Rubens Sampaio ◽  
Artem Karev

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 120
Author(s):  
Qing Peng

Although meta-generalized-gradient approximations (meta-GGAs) are believed potentially the most accurate among the efficient first-principles calculations, the performance has not been accessed on the nonlinear mechanical properties of two-dimensional nanomaterials. Graphene, like two-dimensional silicon carbide g-SiC, has a wide direct band-gap with applications in high-power electronics and solar energy. Taken g-SiC as a paradigm, we have investigated the performance of meta-GGA functionals on the nonlinear mechanical properties under large strains, both compressive and tensile, along three deformation modes using Strongly Constrained and Appropriately Normed Semilocal Density Functional (SCAN) as an example. A close comparison suggests that the nonlinear mechanics predicted from SCAN are very similar to that of Perdew-Burke-Ernzerhof (PBE) formulated functional, a standard Density Functional Theory (DFT) functional. The improvement from SCAN calculation over PBE calculation is minor, despite the considerable increase of computing demand. This study could be helpful in selection of density functionals in simulations and modeling of mechanics of materials.


2020 ◽  
Vol 125 (26) ◽  
Author(s):  
Norifumi Matsumoto ◽  
Kohei Kawabata ◽  
Yuto Ashida ◽  
Shunsuke Furukawa ◽  
Masahito Ueda

Sign in / Sign up

Export Citation Format

Share Document