scholarly journals Performance of SCAN Meta-GGA Functionals on Nonlinear Mechanics of Graphene-Like g-SiC

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 120
Author(s):  
Qing Peng

Although meta-generalized-gradient approximations (meta-GGAs) are believed potentially the most accurate among the efficient first-principles calculations, the performance has not been accessed on the nonlinear mechanical properties of two-dimensional nanomaterials. Graphene, like two-dimensional silicon carbide g-SiC, has a wide direct band-gap with applications in high-power electronics and solar energy. Taken g-SiC as a paradigm, we have investigated the performance of meta-GGA functionals on the nonlinear mechanical properties under large strains, both compressive and tensile, along three deformation modes using Strongly Constrained and Appropriately Normed Semilocal Density Functional (SCAN) as an example. A close comparison suggests that the nonlinear mechanics predicted from SCAN are very similar to that of Perdew-Burke-Ernzerhof (PBE) formulated functional, a standard Density Functional Theory (DFT) functional. The improvement from SCAN calculation over PBE calculation is minor, despite the considerable increase of computing demand. This study could be helpful in selection of density functionals in simulations and modeling of mechanics of materials.

Author(s):  
Ahmad A. Mousa ◽  
Jamil M. Khalifeh

Structural, electronic, elastic and mechanical properties of ScM (M[Formula: see text][Formula: see text][Formula: see text]Au, Hg and Tl) intermetallic compounds are studied using the full potential-linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT), within the generalized gradient approximation (GGA) and the local density approximation (LDA) to the exchange-correlation approximation energy as implemented in the Wien2k code. The ground state properties including lattice parameters, bulk modulus and elastic constants were all computed and compared with the available previous theoretical and experimental results. The lattice constant was found to increase in contrast to the bulk modulus which was found to decrease with every substitution of the cation (M) starting from Au till Tl in ScM. Both the electronic band structure and density-of-states (DOS) calculations show that these compounds possess metallic properties. The calculated elastic constants ([Formula: see text], [Formula: see text] and [Formula: see text] confirmed the elastic stability of the ScM compounds in the B2-phase. The mechanical properties and ductile behaviors of these compounds are also predicted based on the calculated elastic constants.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Kun Yuan ◽  
Meng-Yang Li ◽  
Yan-Zhi Liu ◽  
Ren-Zhong Li

The intrinsic negative Poisson’s ratio effect in 2-dimensional nanomaterials have attracted a lot of research interests due to its superior mechanical properties, and new mechanisms have emerged in the nanoscale. In this paper, we designed a novel graphyne-like two-dimensional carbon nanostructure with a “butterfly” shape (GL-2D-1) and its configuration isomer with a “herring-bone” form (GL-2D-2) by means of density functional theoretical calculation and predicted their in-plane negative Poisson’s ratio effect and other mechanical properties. Both GL-2D-1 and GL-2D-2 present a significant negative Poisson’s ratio effect under different specific strains conditions. By contrast, GL-2D-2 presents a much stronger negative Poisson’s ratio effect and mechanical stability than does GL-2D-1. It is hoped that this work could be a useful structural design strategy for the development of the 2D carbon nanostructure with the intrinsic negative Poisson’s ratio.


Author(s):  
R. Ansari ◽  
S. Malakpour ◽  
M. Faghihnasiri ◽  
S. Ajori

Recently, synthesized inorganic two-dimensional monolayer nanostructures are very promising to be applied in electronic devices. This article explores the mechanical properties of a monolayer molybdenum disulfide (MoS2) including Young's bulk and shear moduli and Poisson's ratio by applying density functional theory (DFT) calculation based on the generalized gradient approximation (GGA). The results demonstrate that the elastic properties of MoS2 nanosheets are less than those of graphene and hexagonal boron-nitride (h-BN) nanosheets. However, their Poisson's ratio is found to be higher than that of graphene and h-BN nanosheet. It is also observed that due to the special structure of MoS2, the thickness of nanosheet changes when the axial strain is applied.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3338
Author(s):  
Jiali Wang ◽  
Xiuwen Zhao ◽  
Guichao Hu ◽  
Junfeng Ren ◽  
Xiaobo Yuan

van der Waals heterostructures (vdWHs) can exhibit novel physical properties and a wide range of applications compared with monolayer two-dimensional (2D) materials. In this work, we investigate the electronic and optical properties of MoSTe/MoGe2N4 vdWH under two different configurations using the VASP software package based on density functional theory. The results show that Te4-MoSTe/MoGe2N4 vdWH is a semimetal, while S4-MoSTe/MoGe2N4 vdWH is a direct band gap semiconductor. Compared with the two monolayers, the absorption coefficient of MoSTe/MoGe2N4 vdWH increases significantly. In addition, the electronic structure and the absorption coefficient can be manipulated by applying biaxial strains and changing interlayer distances. These studies show that MoSTe/MoGe2N4 vdWH is an excellent candidate for high-performance optoelectronic devices.


2019 ◽  
Vol 13 (4) ◽  
pp. 401-410
Author(s):  
Dejan Zagorac ◽  
Jelena Zagorac ◽  
Klaus Doll ◽  
Maria Cebela ◽  
Branko Matovic

A Density Functional Theory (DFT) study has been performed in order to investigate behaviour of barium sulfide (BaS) at high pressures, and relationship between computed properties, in great detail. Novel predicted and previously synthesized BaS modifications have been calculated using Local Density Approximations (LDA) and Generalized Gradient Approximation (GGA) functionals. In particular, a detailed investigation of structural changes and its corresponding volume effect up to 100GPa, with gradual pressure increase, has been performed from the first principles. Band gap engineering of the experimentally observed BaS phases at high pressures has been simulated and structure-property relationship is investigated. For each of the predicted and experimentally observed BaS structures, elastic constants and mechanical properties under compression have been investigated (e.g. ductility/brittleness, hardness, anisotropy). This study offers a new perspective of barium sulphide as a high pressure material with application in ceramics, optical and electrical technologies.


2018 ◽  
Vol 32 (06) ◽  
pp. 1850057 ◽  
Author(s):  
A. Erkisi ◽  
G. Surucu ◽  
E. Deligoz

In this study, the structural, electronic, magnetic, and mechanical properties of perovskite oxides PbM[Formula: see text]Nb[Formula: see text]O3(M = Fe, Co and Ni) are investigated. The systems are treated in ferromagnetic order. The calculations are carried out in the framework of density functional theory (DFT) within the plane-wave pseudopotential method. The exchange-correlation potential is approximated by generalized-gradient spin approach (GGA). The intra-atomic Coulomb repulsion is also taken into account in calculations (GGA + U). We have considered two generalized-gradient spin approximation functionals, which are Perdew–Burke–Ernzerhof (PBE) and PBE for solids (PBEsol) for structural parameter calculations when it included Hubbard potential. Although the spin-polarized electronic band structures of PbCo[Formula: see text]Nb[Formula: see text]O3and PbNi[Formula: see text]Nb[Formula: see text]O3systems exhibit metallic property in ferromagnetic phase, a bandgap is observed in spin-down states of PbFe[Formula: see text]Nb[Formula: see text]O3resulting in half-metallic behavior. The main reason for this behavior is attributed to the hybridization between [Formula: see text]-states of transition metal atoms and [Formula: see text]-states of oxygen atoms. The stability mechanically and the calculated mechanical properties by using elastic constants show that these compounds are mechanically stable in tetragonal phase and have anisotropic character mechanically.


2020 ◽  
Vol 48 (5-6) ◽  
pp. 399-411
Author(s):  
SAAD TARIQ ◽  
ABEEHA BATOOL ◽  
M. A. FARIDI ◽  
M. IMRAN JAMIL ◽  
A. A. MUBARAK ◽  
...  

In the enclosure of density functional theory along with GGA (generalized gradient approximation), incorporated in Wien2k code has been utilized to explore structural, electronic and mechanical properties of SrNbO3 (SNO). It has been found that spin-polarized phase of SNO is most stable at 60 GPa with the calculated lattice constant of 3.801 Å. The calculated lattice constant and bulk modulus at 0 GPa are found to be in agreement with literature. The present calculations predict that SNO is stable and antiferromagnetic in nature up to 60 GPa. The calculated charge density contours and Cauchy pressure depicts majority of the bonding nature between the content atoms of SNO is ionic with a small contribution of covalent bond. The band-gap is found traverse from indirect R-Г gap under 0 GPa to wider direct Г-Г gap under 60 GPa. Furthermore, calculated elastic constants, C11, C12 and C44 suggest that compound is stable up to 60 GPa and exhibits ductile, anisotropic nature. Beneficial electronic and mechanical applications are predicted for SNO that could be used in optoelectronic applications.


2018 ◽  
Vol 32 (23) ◽  
pp. 1850248
Author(s):  
M. I. Babalola ◽  
B. I. Adetunji ◽  
B. E. Iyorzor ◽  
A. Yaya

The structural, electronic, elastic and mechanical properties of ZrNiPb half-Heusler alloy under pressure ranging from 0 to 25 GPa have been studied using the density functional theory within the generalized gradient approximation (GGA). The results of ambient condition were in good agreement with the available theoretical and experimental data. Our electronic structure and density of state results show that ZrNiPb is an indirect bandgap semiconductor half-Heusler alloy with a narrow energy gap of 0.375 eV. Based on the calculated elastic constants (C[Formula: see text], C[Formula: see text] and C[Formula: see text]), Young’s modulus (E), Poisson’s ratio ([Formula: see text]), Shear modulus (G), Zener anisotropy factor (A) and brittle-ductile behaviors under pressure have been discussed. The calculated Poisson’s ratio shows that ZrNiPb undergoes a relatively small volume change during uniaxial deformation. We show that the chemical bonds in ZrNiPb are stronger due to the high value of C[Formula: see text].


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6404
Author(s):  
Yukai Zhang ◽  
Xin Qu ◽  
Lihua Yang ◽  
Xin Zhong ◽  
Dandan Wang ◽  
...  

Two-dimensional (2D) semiconductors with desirable bandgaps and high carrier mobility have great potential in electronic and optoelectronic applications. In this work, we proposed α-TeB and β-TeB monolayers using density functional theory (DFT) combined with the particle swarm-intelligent global structure search method. The high dynamical and thermal stabilities of two TeB structures indicate high feasibility for experimental synthesis. The electronic structure calculations show that the two structures are indirect bandgap semiconductors with bandgaps of 2.3 and 2.1 eV, respectively. The hole mobility of the β-TeB sheet is up to 6.90 × 102 cm2 V−1 s−1. By reconstructing the two structures, we identified two new horizontal and lateral heterostructures, and the lateral heterostructure presents a direct band gap, indicating more probable applications could be further explored for TeB sheets.


Sign in / Sign up

Export Citation Format

Share Document