Technique for Friction Model Identification in an Industrial Robot Joint Using KUKA KR10

Author(s):  
M. N. Nevmerzhitskiy ◽  
A. V. Vara ◽  
K.V. Zmeu ◽  
B. S. Notkin
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Li Ding ◽  
Hongtao Wu ◽  
Yu Yao ◽  
Yuxuan Yang

A complete and systematic procedure for the dynamical parameters identification of industrial robot manipulator is presented. The system model of robot including joint friction model is linear with respect to the dynamical parameters. Identification experiments are carried out for a 6-degree-of-freedom (DOF) ER-16 robot. Relevant data is sampled while the robot is tracking optimal trajectories that excite the system. The artificial bee colony algorithm is introduced to estimate the unknown parameters. And we validate the dynamical model according to torque prediction accuracy. All the results are presented to demonstrate the efficiency of our proposed identification algorithm and the accuracy of the identified robot model.


Author(s):  
Guanghui Liu ◽  
Qiang Li ◽  
Lijin Fang ◽  
Bing Han ◽  
Hualiang Zhang

Purpose The purpose of this paper is to propose a new joint friction model, which can accurately model the real friction, especially in cases with sudden changes in the motion direction. The identification and sensor-less control algorithm are investigated to verify the validity of this model. Design/methodology/approach The proposed friction model is nonlinear and it considers the angular displacement and angular velocity of the joint as a secondary compensation for identification. In the present study, the authors design a pipeline – including a manually designed excitation trajectory, a weighted least squares algorithm for identifying the dynamic parameters and a hand guiding controller for the arm’s direct teaching. Findings Compared with the conventional joint friction model, the proposed method can effectively predict friction factors during the dynamic motion of the arm. Then friction parameters are quantitatively obtained and compared with the proposed friction model and the conventional friction model indirectly. It is found that the average root mean square error of predicted six joints in the proposed method decreases by more than 54%. The arm’s force control with the full torque using the estimated dynamic parameters is qualitatively studied. It is concluded that a light-weight industrial robot can be dragged smoothly by the hand guiding. Practical implications In the present study, a systematic pipeline is proposed for identifying and controlling an industrial arm. The whole procedure has been verified in a commercial six DOF industrial arm. Based on the conducted experiment, it is found that the proposed approach is more accurate in comparison with conventional methods. A hand-guiding demo also illustrates that the proposed approach can provide the industrial arm with the full torque compensation. This essential functionality is widely required in many industrial arms such as kinaesthetic teaching. Originality/value First, a new friction model is proposed. Based on this model, identifying the dynamic parameter is carried out to obtain a set of model parameters of an industrial arm. Finally, a smooth hand guiding control is demonstrated based on the proposed dynamic model.


Author(s):  
Rob Waiboer ◽  
Ronald Aarts ◽  
Ben Jonker

This paper deals with the modelling and identification of a six axes industrial Sta¨ubli RX90 robot. A non-linear finite element method is used to generate the dynamic equations of motion in a form suitable for both simulation and identification. The latter requires that the equations of motion are linear in the inertia parameters. Joint friction is described by a friction model that describes the friction behaviour in the full velocity range necessary for identification. Experimental parameter identification by means of linear least squares techniques showed to be very suited for identification of the unknown parameters, provided that the problem is properly scaled and that the influence of disturbances is sufficiently analysed and managed. An analysis of the least squares problem by means of a singular value decomposition is preferred as it not only solves the problem of rank deficiency, but it also can correctly deal with measurement noise and unmodelled dynamics.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Meseret A. Tadese ◽  
Francisco Yumbla ◽  
June-Sup Yi ◽  
Woongyong Lee ◽  
Jonghoon Park ◽  
...  

Author(s):  
Giovanni Legnani ◽  
Giovanni Incerti ◽  
Roberto Pagani ◽  
Matteo Gheza

Abstract The paper presents a second order friction model for the joints of industrial robot manipulators that takes into account temperature effects. A solution based on a polynomial description of the friction is proposed. The theoretical analysis and the experimental measurements have shown that friction decreases with increasing temperature, which in turn depends on the working cycle of the manipulator. The mathematical model here proposed allows to foresee the friction variation during extensive working cycles and it does not require the use of a transducer for the measurement of the joint internal temperature; therefore it is well suitable for low-cost industrial applications, to improve the control performance or to predict the energy consumption. Experimental tests performed on a commercial 6 DOF manipulator show that the model is effective in estimating the joint temperature and the friction torque during the robot operations.


2008 ◽  
Vol 41 (2) ◽  
pp. 14906-14911 ◽  
Author(s):  
Rodrigo A. Romano ◽  
Claudio Garcia

Sign in / Sign up

Export Citation Format

Share Document