Automated Error-Prevention and Error-Detection Tools for Assembly Language in the Educational Environment

Author(s):  
Lance Johnson ◽  
David Pheanis
2017 ◽  
Vol 44 (4) ◽  
pp. 1212-1223 ◽  
Author(s):  
Michelle Passarge ◽  
Michael K. Fix ◽  
Peter Manser ◽  
Marco F. M. Stampanoni ◽  
Jeffrey V. Siebers

2020 ◽  
Vol 11 (1) ◽  
pp. 90-100 ◽  
Author(s):  
Ela Vidovič ◽  
Brigita Gajšek

AbstractVision picking empowers users with access to real-time digital order information, while freeing them from handheld radio frequency devices. The smart glasses, as an example of vision picking enabler, provide visual and voice cues to guide order pickers. The glasses mostly also have installed navigation features that can sense the order picker’s position in the warehouse. This paper explores picking errors in vision systems with literature review and experimental work in laboratory environment. The results show the effectiveness of applying vision picking systems for the purposes of active error prevention, when they are compared to established methods, such as paper-picking and using cart mounted displays. A serious competitor to vision picking systems are pick-to-light systems.The strong advantage of vision picking system is that most of the errors are detected early in the process and not at the customer’s site. The cost of fixing the error is thus minimal. Most errors consequently directly influence order picker’s productivity in negative sense. Nonetheless, the distinctive feature of the system is extremely efficient error detection.


Author(s):  
A. V. Crewe ◽  
M. Ohtsuki

We have assembled an image processing system for use with our high resolution STEM for the particular purpose of working with low dose images of biological specimens. The system is quite flexible, however, and can be used for a wide variety of images.The original images are stored on magnetic tape at the microscope using the digitized signals from the detectors. For low dose imaging, these are “first scan” exposures using an automatic montage system. One Nova minicomputer and one tape drive are dedicated to this task.The principal component of the image analysis system is a Lexidata 3400 frame store memory. This memory is arranged in a 640 x 512 x 16 bit configuration. Images are displayed simultaneously on two high resolution monitors, one color and one black and white. Interaction with the memory is obtained using a Nova 4 (32K) computer and a trackball and switch unit provided by Lexidata.The language used is BASIC and uses a variety of assembly language Calls, some provided by Lexidata, but the majority written by students (D. Kopf and N. Townes).


Sign in / Sign up

Export Citation Format

Share Document