CTXO, clever time crystal oscillator (clock)

Author(s):  
D.W. Allan ◽  
J.A. Kusters ◽  
C.E. Wheatley
Keyword(s):  
2018 ◽  
Author(s):  
D. Basak ◽  
L. H. Ponce

Abstract Two case-studies on uncommon metals whiskers, performed at the Reliability Analysis Laboratory (RAL) of Northrop Grumman Innovation Systems, are presented. The components analyzed are an Oven Controlled Crystal Oscillator (OCXO) and an Electromechanical Relay. Investigative techniques were used to determine the chemical and physical makeup of the metal whiskers and develop an understanding of the underlying effects and mechanisms that caused the conditions conducive to whisker growth.


GPS Solutions ◽  
2021 ◽  
Vol 25 (3) ◽  
Author(s):  
Damon Van Buren ◽  
Penina Axelrad ◽  
Scott Palo

AbstractWe describe our investigation into the performance of low-power heterogeneous timing systems for small satellites, using real GPS observables from the GRACE Follow-On mission. Small satellites have become capable platforms for a wide range of commercial, scientific and defense missions, but they are still unable to meet the needs of missions that require precise timing, on the order of a few nanoseconds. Improved low-power onboard clocks would make small satellites a viable option for even more missions, enabling radio aperture interferometry, improved radio occultation measurements, high altitude GPS navigation, and GPS augmentation missions, among others. One approach for providing improved small satellite timekeeping is to combine a heterogeneous group of oscillators, each of which provides the best stability over a different time frame. A hardware architecture that uses a single-crystal oscillator, one or more Chip Scale Atomic Clocks (CSACs) and the reference time from a GPS receiver is presented. The clocks each contribute stability over a subset of timeframes, resulting in excellent overall system stability for timeframes ranging from less than a second to several days. A Kalman filter is used to estimate the long-term errors of the CSACs based on the CSAC-GPS time difference, and the improved CSAC time is used to discipline the crystal oscillator, which provides the high-stability reference clock for the small satellite. Simulations using GRACE-FO observations show time error standard deviations for the system range from 2.3 ns down to 1.3 ns for the clock system, depending on how many CSACs are used. The results provide insight into the timing performance which could be achieved on small LEO spacecraft by a low power timing system.


Author(s):  
Kaoru Kobayashi ◽  
Yoshiaki Mori ◽  
Tsukasa Kobata ◽  
Manabu Ito ◽  
Shigenori Watanabe ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. 4
Author(s):  
Katsuya Hirota ◽  
Tomoko Ariga ◽  
Masahiro Hino ◽  
Go Ichikawa ◽  
Shinsuke Kawasaki ◽  
...  

A neutron detector using a fine-grained nuclear emulsion has a sub-micron spatial resolution and thus has potential to be applied as high-resolution neutron imaging. In this paper, we present two approaches to applying the emulsion detectors for neutron imaging. One is using a track analysis to derive the reaction points for high resolution. From an image obtained with a 9 μm pitch Gd grating with cold neutrons, periodic peak with a standard deviation of 1.3 μm was observed. The other is an approach without a track analysis for high-density irradiation. An internal structure of a crystal oscillator chip, with a scale of approximately 30 μm, was able to be observed after an image analysis.


1983 ◽  
Vol 54 (2) ◽  
pp. 365-367
Author(s):  
D. M. VASILJEVIĆ
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document