clock system
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 47)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Jing Zhang ◽  
Lijia Zhao ◽  
Yating Li ◽  
Hao Dong ◽  
Haisen Zhang ◽  
...  

Autophagy of granulosa cells (GCs) is involved in follicular atresia, which occurs repeatedly during the ovarian development cycle. Several circadian clock genes are rhythmically expressed in both rodent ovarian tissues and GCs. Nuclear receptor subfamily 1 group D member 1 (NR1D1), an important component of the circadian clock system, is involved in the autophagy process through the regulation of autophagy-related genes. However, there are no reports illustrating the role of the circadian clock system in mouse GC autophagy. In the present study, we found that core circadian clock genes (Bmal1, Per2, Nr1d1, and Dbp) and an autophagy-related gene (Atg5) exhibited rhythmic expression patterns across 24 h in mouse ovaries and primary GCs. Treatment with SR9009, an agonist of NR1D1, significantly reduced the expression of Bmal1, Per2, and Dbp in mouse GCs. ATG5 expression was significantly attenuated by SR9009 treatment in mouse GCs. Conversely, Nr1d1 knockdown increased ATG5 expression in mouse GCs. Decreased NR1D1 expression at both the mRNA and protein levels was detected in the ovaries of Bmal1-/- mice, along with elevated expression of ATG5. Dual-luciferase reporter assay and electrophoretic mobility shift assay showed that NR1D1 inhibited Atg5 transcription by binding to two putative retinoic acid-related orphan receptor response elements within the promoter. In addition, rapamycin-induced autophagy and ATG5 expression were partially reversed by SR9009 treatment in mouse GCs. Taken together, our current data demonstrated that the circadian clock regulates GC autophagy through NR1D1-mediated inhibition of ATG5 expression, and thus, plays a role in maintaining autophagy homeostasis in GCs.


2021 ◽  
Author(s):  
Gunnar Carlstedt ◽  
Mats Rimborg

<div>A clock system for a huge grid of small clock regions is presented. There is an oscillator in each clock region, which drives the local clock of a processing element (PE). The oscillators are kept synchronized by exploiting the phase of their neighbors. In an infinite mesh, the clock skew would be zero, but in a network of limited size there will be fringe effects. In a mesh with 25×25 oscillators, the maximum skew between neighboring regions is within 3.3 ps. By slightly adjusting the free running frequency of the oscillators, this skew can be reduced to 1.2 ps. The mesh may contain millions of clock regions.</div><div> Because there is no central clock, both power consumption and clock frequency can be improved compared to a conventional clock distribution network. A PE of 150×150 µm² running at 6.7 GHz with 93 master-slave flip-flops is used as an example. The PE-internal clock skew is less than 2.3 ps, and the energy consumption of the clock system 807 µW per PE. It corresponds to an effective gate and wire capacitance of 509 aF, or 7.3 gate capacitances.</div><div> Power noise is reduced by scheduling the local oscillators gradually along one of the grid’s axes. In this way, surge currents, which generally have their peaks at the clock edges, are distributed evenly over a full clock cycle.</div>


2021 ◽  
Author(s):  
Gunnar Carlstedt ◽  
Mats Rimborg

<div>A clock system for a huge grid of small clock regions is presented. There is an oscillator in each clock region, which drives the local clock of a processing element (PE). The oscillators are kept synchronized by exploiting the phase of their neighbors. In an infinite mesh, the clock skew would be zero, but in a network of limited size there will be fringe effects. In a mesh with 25×25 oscillators, the maximum skew between neighboring regions is within 3.3 ps. By slightly adjusting the free running frequency of the oscillators, this skew can be reduced to 1.2 ps. The mesh may contain millions of clock regions.</div><div> Because there is no central clock, both power consumption and clock frequency can be improved compared to a conventional clock distribution network. A PE of 150×150 µm² running at 6.7 GHz with 93 master-slave flip-flops is used as an example. The PE-internal clock skew is less than 2.3 ps, and the energy consumption of the clock system 807 µW per PE. It corresponds to an effective gate and wire capacitance of 509 aF, or 7.3 gate capacitances.</div><div> Power noise is reduced by scheduling the local oscillators gradually along one of the grid’s axes. In this way, surge currents, which generally have their peaks at the clock edges, are distributed evenly over a full clock cycle.</div>


2021 ◽  
Vol 22 (21) ◽  
pp. 11750
Author(s):  
Nickie Safarian ◽  
Sarah Houshangi-Tabrizi ◽  
Christiane Zoidl ◽  
Georg R. Zoidl

Pannexin1 (Panx1) can form ATP-permeable channels that play roles in the physiology of the visual system. In the zebrafish two ohnologs of Panx1, Panx1a and Panx1b, have unique and shared channel properties and tissue expression patterns. Panx1a channels are located in horizontal cells of the outer retina and modulate light decrement detection through an ATP/pH-dependent mechanisms and adenosine/dopamine signaling. Here, we decipher how the strategic localization of Panx1b channels in the inner retina and ganglion cell layer modulates visually evoked motor behavior. We describe a panx1b knockout model generated by TALEN technology. The RNA-seq analysis of 6 days post-fertilization larvae is confirmed by real-time PCR and paired with testing of locomotion behaviors by visual motor and optomotor response tests. We show that the loss of Panx1b channels disrupts the retinal response to an abrupt loss of illumination and it decreases the larval ability to follow leftward direction of locomotion in low light conditions. We concluded that the loss of Panx1b channels compromises the final output of luminance as well as motion detection. The Panx1b protein also emerges as a modulator of the circadian clock system. The disruption of the circadian clock system in mutants suggests that Panx1b could participate in non-image forming processes in the inner retina.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1664
Author(s):  
Nan-Sun Kim ◽  
Su-Jeong Kim ◽  
Jung-Su Jo ◽  
Jun-Gu Lee ◽  
Soo-In Lee ◽  
...  

Circadian clocks integrate environmental cues with endogenous signals to coordinate physiological outputs. Clock genes in plants are involved in many physiological and developmental processes, such as photosynthesis, stomata opening, stem elongation, light signaling, and floral induction. Many Brassicaceae family plants, including Chinese cabbage (Brassica rapa ssp. pekinensis), produce a unique glucosinolate (GSL) secondary metabolite, which enhances plant protection, facilitates the design of functional foods, and has potential medical applications (e.g., as antidiabetic and anticancer agents). The levels of GSLs change diurnally, suggesting a connection to the circadian clock system. We investigated whether circadian clock genes affect the biosynthesis of GSLs in Brassica rapa using RNAi-mediated suppressed transgenic Brassica rapa GIGENTEA homolog (BrGI knockdown; hereafter GK1) Chinese cabbage. GIGANTEA plays an important role in the plant circadian clock system and is related to various developmental and metabolic processes. Using a validated GK1 transgenic line, we performed RNA sequencing and high-performance liquid chromatography analyses. The transcript levels of many GSL pathway genes were significantly altered in GK1 transgenic plants. In addition, GSL contents were substantially reduced in GK1 transgenic plants. We report that the BrGI circadian clock gene is required for the biosynthesis of GSLs in Chinese cabbage plants.


2021 ◽  
Author(s):  
Minako Isoda ◽  
Shogo Ito ◽  
Tokitaka Oyama

The circadian clock system is widely conserved in plants; however, divergence in circadian rhythm properties is poorly understood. We conducted a comparative analysis of the circadian properties of closely related duckweed species. Using a particle bombardment method, a circadian bioluminescent reporter was introduced into duckweed plants. We measured bioluminescence circadian rhythms of eight species of the genus Lemna and seven species of the genus Wolffiella at various temperatures (20, 25, and 30 °C) and light conditions (constant light or constant dark). Wolffiella species inhabit relatively warm areas and lack some tissues/organs found in Lemna species. Lemna species tended to show robust bioluminescence circadian rhythms under all conditions, while Wolffiella species showed lower rhythm stability, especially at higher temperatures. For Lemna, two species (L. valdiviana and L. minuta) forming a clade showed relatively lower circadian stability. For Wolffiella, two species (W. hyalina and W. repanda) forming a clade showed extremely long period lengths. The circadian properties of species primarily reflect their phylogenetic positions. The relationships between geographical and morphological factors and circadian properties are also suggested.


2021 ◽  
Vol 14 ◽  
Author(s):  
Weihao Wang ◽  
Xiaoye Duan ◽  
Zhengxiang Huang ◽  
Qi Pan ◽  
Chen Chen ◽  
...  

Organisms have developed common behavioral and physiological adaptations to the influence of the day/night cycle. The CLOCK system forms an internal circadian rhythm in the suprachiasmatic nucleus (SCN) during light/dark input. The SCN may synchronize the growth hormone (GH) secretion rhythm with the dimming cycle through somatostatin neurons, and the change of the clock system may be related to the pulsatile release of GH. The GH—insulin-like growth factor 1 (IGF-1) axis and clock system may interact further on the metabolism through regulatory pathways in peripheral organs. We have summarized the current clinical and animal evidence on the interaction of clock systems with the GH—IGF-1 axis and discussed their effects on metabolism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dongmei Yang ◽  
Christopher H. Morrell ◽  
Alexey E. Lyashkov ◽  
Syevda Tagirova Sirenko ◽  
Ihor Zahanich ◽  
...  

Ca2+ and Vm transitions occurring throughout action potential (AP) cycles in sinoatrial nodal (SAN) cells are cues that (1) not only regulate activation states of molecules operating within criticality (Ca2+ domain) and limit-cycle (Vm domain) mechanisms of a coupled-clock system that underlies SAN cell automaticity, (2) but are also regulated by the activation states of the clock molecules they regulate. In other terms, these cues are both causes and effects of clock molecular activation (recursion). Recently, we demonstrated that Ca2+ and Vm transitions during AP cycles in single SAN cells isolated from mice, guinea pigs, rabbits, and humans are self-similar (obey a power law) and are also self-similar to trans-species AP firing intervals (APFIs) of these cells in vitro, to heart rate in vivo, and to body mass. Neurotransmitter stimulation of β-adrenergic receptor or cholinergic receptor–initiated signaling in SAN cells modulates their AP firing rate and rhythm by impacting on the degree to which SAN clocks couple to each other, creating the broad physiologic range of SAN cell mean APFIs and firing interval variabilities. Here we show that Ca2+ and Vm domain kinetic transitions (time to AP ignition in diastole and 90% AP recovery) occurring within given AP, the mean APFIs, and APFI variabilities within the time series of APs in 230 individual SAN cells are self-similar (obey power laws). In other terms, these long-range correlations inform on self-similar distributions of order among SAN cells across the entire broad physiologic range of SAN APFIs, regardless of whether autonomic receptors of these cells are stimulated or not and regardless of the type (adrenergic or cholinergic) of autonomic receptor stimulation. These long-range correlations among distributions of Ca2+ and Vm kinetic functions that regulate SAN cell clock coupling during each AP cycle in different individual, isolated SAN cells not in contact with each other. Our numerical model simulations further extended our perspectives to the molecular scale and demonstrated that many ion currents also behave self-similar across autonomic states. Thus, to ensure rapid flexibility of AP firing rates in response to different types and degrees of autonomic input, nature “did not reinvent molecular wheels within the coupled-clock system of pacemaker cells,” but differentially engaged or scaled the kinetics of gears that regulate the rate and rhythm at which the “wheels spin” in a given autonomic input context.


2021 ◽  
Author(s):  
Isabel Heyde ◽  
Henrik Oster

Abstract 24-hour rhythms in physiology and behaviour are orchestrated by an endogenous circadian clock system. In mammals, these clocks are hierarchically organized with a master pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN). External time signal – so-called zeitgebers – align internal with geophysical time. During shift work, zeitgeber input conflicting with internal time induces circadian desynchrony which, in turn, promotes metabolic and psychiatric disorders. However, little is known about how internal desynchrony is expressed at the molecular level under chronodisruptive environmental conditions. We here investigated the effects of zeitgeber misalignment on circadian molecular organisation by combining 28-hour light-dark (LD-28) cycles with either 24-hour (FF-24) or 28-hour feeding-fasting (FF-28) regimes in mice. We found that FF cycles showed strong effects on peripheral clocks, while having little effect on centrally coordinated activity rhythms. Systemic, i.e., across-tissue internal circadian desynchrony was induced within four days in LD-28/FF-24, while phase coherence between tissue clocks was largely maintained under LD-28/FF-28 conditions. In contrast, temporal coordination of clock gene activity across tissues was reduced under LD-28/FF-28 conditions compared to LD-28/FF-24. These results indicate that timed food intake may improve internal synchrony under disruptive zeitgeber conditions but may, at the same time, weaken clock function at the tissue level.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 842
Author(s):  
Wen-Zhao Cui ◽  
Jian-Feng Qiu ◽  
Tai-Ming Dai ◽  
Zhuo Chen ◽  
Jiang-Lan Li ◽  
...  

Diapause is a developmental transition in insects based on seasonal adaptation to adversity; it is regulated by a circadian clock system and the endocrine system. However, the molecular node and its mechanism underlying the effects of these systems are still unclear. Here, a mutant of Bombyx mori with the circadian clock gene Period (Per) knocked out was constructed, which dramatically changed the classic diapause-destined pathway. Per-knockout silkworms powerfully attenuated, but could not completely block, the predetermined effects of temperature and photoperiod on diapause determination, and this effect depended on the diapause hormone (DH) pathway. The impaired transcription-translation feedback loop of the circadian clock system lacking the Per gene caused direct up-regulation of the expression of GRD, a receptor of γ-aminobutyric acid (GABA), by changing expression level of Cycle. The synthesis of GABA in the tissue complex of brain-suboesophageal ganglion then increased and restricted the decomposition, which continuously promoted the GABAergic signal to play a role, and finally inhibiting (delaying) the release of DH to the hemolymph, and reducing the diapause-inducing effect of DH. The results provided an example to explain the regulatory mechanism of the circadian clock on endocrine hormones in the silkworm.


Sign in / Sign up

Export Citation Format

Share Document