Guaranteed-cost design of continuous-time Takagi-Sugeno fuzzy controllers via linear matrix inequalities

Author(s):  
A. Jadbabaie ◽  
M. Jamshidi ◽  
A. Titli
2014 ◽  
Vol 6 ◽  
pp. 948795
Author(s):  
Peng Wang ◽  
Jixiang Li ◽  
Yuan Zhang

The problem of walking simulation for the quadruped search robot on a slope is described as an uncertainty system. In order to create the virtual ramp road environment, VRML modeling language is used to build a real environment, which is a 3D terrain scene in Matlab platform. According to the VRML model structure of the quadruped search robot, a guaranteed cost nonfragile robust controller is designed for ramp road walking simulation. The constraint inequation is transformed into a strict linear inequality by using two equalities; the controller and the guaranteed cost upper bound are given based on the solutions of the linear matrix inequality. And the approaches of designing the controller are given in terms of linear matrix inequalities. The walking stability of quadruped search robot is observed using the VRML model established with the change of gravity curve. Simulation results show that the gravity displacement curve of the robot is smooth. The results given by linear matrix inequalities indicate that the proposed guaranteed cost controller is correct and effective.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Qing Wang ◽  
Maopeng Ran ◽  
Chaoyang Dong ◽  
Maolin Ni

We present an improved antiwindup design for linear invariant continuous-time systems with actuator saturation nonlinearities. In the improved approach, two antiwindup compensators are simultaneously designed: one activated immediately at the occurrence of actuator saturation and the other activated in anticipatory of actuator saturation. Both the static and dynamic antiwindup compensators are considered. Sufficient conditions for global stability and minimizing the inducedL2gain are established, in terms of linear matrix inequalities (LMIs). We also show that the feasibility of the improved antiwindup is similar to the traditional antiwindup. Benefits of the proposed approach over the traditional antiwindup and a recent innovative antiwindup are illustrated with well-known examples.


2013 ◽  
Vol 415 ◽  
pp. 259-266
Author(s):  
Peng Lin ◽  
Gang Hu

In this paper, the admissible conditions (regular, impulse-free and stable) for a class of continuous-time Takagi-Sugeno (T-S) fuzzy descriptor systems are investigated. Sufficient admissible conditions for the closed-loop systems under non-parallel distributed compensation (non-PDC) feedback are proposed. This approach is mainly based on the state space division properly to make the membership functions continuous differentiable. Moreover, in order to make good use of the systems’ structural information in rules, the provided conditions are obtained through fuzzy Lyapunov functions candidate and can be formulated in terms of dilated Linear Matrix Inequalities (LMIs). Finally, the effectiveness of the proposed approach is shown through numerical example by using the optimization toolbox.


2021 ◽  
Vol 297 ◽  
pp. 01035
Author(s):  
Rachid Naoual ◽  
Abderrahim El-Amrani ◽  
Ismail Boumhidi

This paper deals with the problem of H∞ model reduction for two-dimensional (2D) discrete Takagi-Sugeno (T-S) fuzzy systems described by Fornasini-Marchesini local state-space (FM LSS) models, over finite frequency (FF) domain. New design conditions guaranteeing the FF H∞ model reduction are established in terms of Linear Matrix Inequalities (LMIs). To highlight the effectiveness of the proposed H∞ model reduction design, a numerical example is given.


2000 ◽  
Author(s):  
Kiriakos Kiriakidis

Abstract Unconventional nonlinear models such as nonlinear ARMAX, Takagi-Sugeno fuzzy models, global linearizations, and linear hybrid systems are, at the highest level of abstraction, a sort of quasi-linear models, namely, Polytopic Linear Differential Inclusions (PLDIs). At present, quadratic stability has enabled, mainly via linear matrix inequalities, the analysis and design of a nonlinear system from the vertex matrices of its PLDI model. Proving stability by a globally quadratic Lyapunov function, however, entails conservatism. This paper proposes a less conservative framework by using piecewise-quadratic generalized Lyapunov functions. Further manipulation of the problem within such framework yields a set of bilinear rather than linear matrix inequalities.


Sign in / Sign up

Export Citation Format

Share Document